

MAIN OFFICE 605 THIRD STREET ENCINITAS, CALIFORNIA 92024 T 760.942.5147 T 800.450.1818 F 760.632.0164

May 10, 2013

Ms. Gayle Ackerman, AICP City of Lake Forest 25550 Commercentre Drive, Suite 100 Lake Forest, CA 92630

> Subject: Update to the Environmental Noise Assessment for the Portola Center Project – Lake Forest, California

Dear Ms. Ackerman:

Dudek has reviewed the Portola Center Tentative Maps dated April 2, 2013. The April 2013 Tentative Maps include the conversion of the ¹/₂-acre park to four additional single family lots near the eastern entrance to Portola South (TM 15353), minor adjustments to the lotting depths and road alignments in some of the single family neighborhoods on Portola South, and adjustments to the pad elevations and street alignment in the northeastern corner of Portola North (TM 17300). Neither the adjustments to the lotting depths and road alignments in the neighborhoods on Portola south nor the adjustments to pad elevations and street alignment in the northeastern corner of Portola North would change the findings of Dudek's Environmental Noise Assessment for the Portola Center Project (dated January 31, 2013). The conversion of the ¹/₂acre park to four additional single family lots near the eastern entrance to Portola South (TM 15353) would not change the findings of the Environmental Noise Assessment, either. Those four single family lots would be subject to the interior noise mitigation measure outlined in Section 4.3, which requires an interior noise study for all homes adjacent to, and with a direct line-of-sight of, Glenn Ranch Road and Saddleback Ranch Road. The modeled exterior noise level at that location is below the 65 dB exterior noise threshold; therefore, no additional noise walls would be required.

If you have any questions regarding this update letter, please feel free to contact me at 760.479.4248, or bgrover@dudek.com.

Sincerely,

uair Marce

Brian Grover Environmental Specialist/Project Manager

MAIN OFFICE 605 THIRD STREET ENCINITAS, CALIFORNIA 92024 T 760.942.5147 T 800.450.1818 F 760.632.0164

January 31, 2013

6888-01

Mr. Stephen M. Haase USA Portola Properties 610 West Ash Street, Suite 1500 San Diego, California 92101

Subject Environmental Noise Assessment for the Portola Center Project – Lake Forest, California

Dear Mr. Haase:

Dudek has completed this environmental noise assessment for the Portola Center project located in the City of Lake Forest. In summary, short-term noise impacts would result from the construction of the project. Long-term noise impacts would result from increased traffic noise along Glenn Ranch Road and Saddleback Ranch Road, mechanical equipment noise associated with the mixed use site, and noise from athletic fields in the onsite 5-acre Public Neighborhood Park. The following summarizes the noise mitigation and best management practices (BMPs) for the project. With incorporation of these mitigation measures and BMPs, construction and operational noise impacts will be reduced to a less than significant level.

Mitigation Measures

- 1. Noise barriers such as sound walls or berms up to six feet in height would be required to mitigate the exterior traffic noise impacts on single family homes and multifamily buildings adjacent to portions of Glenn Ranch Road and Saddleback Ranch Road.
- 2. As a requirement of the building permit approval process, an interior noise study will be required for the single-family homes and multi-family buildings adjacent to Glenn Ranch Road and Saddleback Ranch Road to ensure that the interior CNEL would not exceed 45 dB. The residences would most likely require air-conditioning and/or mechanical ventilation systems to meet the City's interior noise standard. Sound-rated windows may also be required.
- 3. A noise assessment shall be prepared prior to the issuance of building permits for the commercial property outdoor mechanical equipment. The noise assessment shall identify any noise control measures necessary to comply with the City's Noise Ordinance requirements.

- 4. All stands and general spectator areas at any active athletic fields within the 5-acre Neighborhood Park shall be located a minimum of 150 feet from the closest residential property line. Alternatively, noise barriers such as sound walls or berms up to six feet in height shall be constructed along the lots within 150 feet of the spectator areas. Berms may be constructed outside the lot boundary in front of the lots whereas sound walls may be constructed inside or outside the lot boundary to satisfy this condition.
- 5. The parks shall not be used between the hours of 10:00 p.m. and 7:00 a.m.
- 6. Prior to Grading Permit issuance, the Applicant shall ensure that:
 - All construction equipment, fixed or mobile, shall be equipped with properly operating and maintained mufflers.
 - Construction noise reduction methods such as shutting off idling equipment, installing temporary acoustic barriers around stationary construction noise sources, maximizing the distance between construction equipment staging areas and occupied residential areas, and use of electric air compressors and similar power tools, rather than diesel equipment, shall be used where feasible. Unattended construction equipment shall not idle for more than 5 minutes when located within 200 feet from residential properties.
 - Noise attenuation measures, which may include, but are not limited to, temporary noise barriers or noise blankets around stationary construction noise sources are implemented where feasible.
 - During construction, stationary construction equipment shall be placed such that emitted noise is directed away from or shielded from noise sensitive receptors where feasible.
 - During construction, stockpiling and vehicle staging areas shall be located as far as practical from noise sensitive receptors.
 - Grading activities shall not take place between the hours of 8:00 p.m. and 7:00 a.m. on weekdays, including Saturday, or at any time on Sunday or a Federal holiday.
 - Construction hours, allowable workdays, and the phone number of the job superintendent shall be clearly posted at construction entrances to allow surrounding property owners and residents to contact the job superintendent if necessary. In the event the City receives a complaint, appropriate corrective actions shall be implemented.

• Two weeks prior to the commencement of construction, notification must be provided to surrounding land uses within 300 feet of a project site disclosing the construction schedule, including the various types of activities that would be occurring throughout the duration of the construction period. This notification shall give a contact phone number for any questions or complaints. All complaints shall be responded to in a method deemed satisfactory by the City of Lake Forest.

Best Management Practices

The project will use lighter-weight grading equipment and static compaction equipment (e.g., a sheep's foot) in any areas that are within 25 feet of existing homes or residential buildings immediately adjacent to the project site. Prior to commencement of grading activities within 25 feet of any existing residential buildings, the project will conduct a video survey of the building foundations of those buildings and install vibration monitoring equipment inside the property boundary for each building within 25 feet of grading activities.

1.0 BACKGROUND

Project Location and Description

The Portola Center project is located on an approximately 197-acre site in the City of Lake Forest, California (Figures 1 and 2). The Applicants are seeking approval of Tentative Tract Maps (TTMs) 17300 and 15353. The project entails development of a total of 930 residential units, consisting of 613 single-family homes, 260 multi-family homes, and 57 affordable multifamily homes. In addition, a total of 18 attached accessory/secondary dwelling units are proposed with TTM 17300, however by California law accessory dwellings are not counted as separate dwelling units. The 57 affordable homes and 10,000 square feet of commercial space would be located on a mixed use site within TTM 15353. The project also includes approximately 10.6 net acres of parkland and private recreational facilities, and nearly 2 miles of public trails.

City Noise Criteria

The City has established noise criteria, primarily for transportation noise sources, within the City's General Plan Noise Element. Noise standards for non-transportation noise sources are provided in the City's Noise Ordinance.

General Plan Noise Element

The City of Lake Forrest requires exterior noise levels at new residential developments not to exceed a Community Noise Equivalent Level (CNEL) of 65 dB at the outdoor living areas (City

of Lake Forest 1994). The outdoor living areas are limited to the rear yards of single family homes, multi-family patios and balconies (with a depth of 6 feet or more) and common recreation areas. Interior noise levels are not to exceed a CNEL of 45 dB. All sound levels discussed in this report are A-weighted.

Noise Ordinance

The City Noise Ordinance is designed to protect people from non-transportation noise sources such as music, construction activity, machinery and pumps, and air conditioners. Enforcement of the ordinance ensures adjacent properties are not exposed to excessive noise from stationary sources. Enforcing the Noise Ordinance includes requiring proposed development projects to show compliance with the ordinance, and requiring construction activity to comply with established work schedule limits. Table 1 depicts the City's noise standards that apply to all residential properties (City of Lake Forest 2010). Following this table are a summary of noise level adjustments that may be made to the noise level limits depending on the period of time the noise occurs during any hour.

Table 1City of Lake Forest Exterior Noise Standards

Noise Level	Time Period
55 dB	7:00 a.m. to 10:00 p.m.
50 dB	10:00 p.m. to 7:00 a.m.

It shall be unlawful for any person at any location to create any noise, or to allow the creation of any noise on property owned, leased, occupied, or otherwise controlled by such person, when the foregoing causes the noise level:

- 1. The noise standard for a cumulative period of more than 30 minutes in any hour; or
- 2. The noise standard plus 4 dB for a cumulative period of more than 15 minutes in any hour; or
- 3. The noise standard plus 10 dB for a cumulative period of more than 5 minutes in any hour; or
- 4. The noise standard plus 15 dB for a cumulative period of more than 1 minute in any hour; or
- 5. The noise standard plus 20 dB for any period of time.

The City limits construction and grading activities to the hours of 7:00 a.m. and 8:00 p.m., Monday through Saturday (City of Lake Forest 2010). Construction is not allowed at any time on Sunday or a Federal holiday.

CEQA Significance Thresholds Guide

DUDEK

The City of Lake Forest has developed a guide for determining significant impacts under the California Environmental Quality Act (CEQA) for the internal review of discretionary projects. With regard to traffic-generated noise, the Guide states that "a proposed project would normally have a significant offsite traffic noise impact if both of the following criteria are met:

- Project traffic will cause a noise level increase of 3dB or more on a roadway segment adjacent to a noise sensitive land use. Noise sensitive land uses include the following: residential (single-family, multi-family, mobile home); hotels; motels; nursing homes; hospitals; parks, playgrounds and recreation areas; and schools.
- The resulting 'future with project' noise level exceeds the noise standard for sensitive land uses as identified in the City of Lake Forest General Plan."

With regard to stationary sources, the Guide states that "a project would normally have a significant noise impact if it would exceed the stationary noise criteria for the City of Lake Forest as specified by the Exterior noise standards set forth in the Noise Control Chapter of the Lake Forest Municipal Code" (City of Lake Forest 2009).

Methodology

The noise level associated with selected roadways was determined using the Federal Highway Administration's TNM 2.5 traffic noise prediction model (FHWA 2004). Input used in the noise model included the existing and future build-out traffic volumes along Glenn Ranch Road and Saddleback Ranch Road (Wilson & Company 2013). The future traffic speed was assumed to be 50 mph along Glen Ranch Road, 50 mph along Saddleback Ranch Road south of Malabar Road, and 40 mph north of Malabar Road, which are the existing posted traffic speed limits along these roads. Noise and vibration levels resulting from the proposed construction activities have been obtained from reports prepared by the Federal Transit Administration (FTA 2006), the California Department of Transportation (Caltrans 2004), and field data from files. The noise impact assessment utilized criteria established in the City of Lake Forest General Plan Safety and Noise Element (City of Lake Forest 1994), Noise Ordinance (City of Lake Forest 2010), and CEQA Significance Thresholds Guide (City of Lake Forest 2009).

2.0 EXISTING CONDITIONS

Traffic along Glenn Ranch Road and Saddleback Ranch Road are the primary noise sources in the immediate vicinity of the site. Background noise includes distant traffic and occasional distant aircraft noise. Glenn Ranch Road and Saddleback Ranch Road are the primary noise sources at the site. Glenn Ranch Road has existing traffic volumes of 6,200 to 13,700 average daily traffic (ADT), and Saddleback Ranch Road has existing traffic volumes of 13,200 ADT. The existing noise level along Glenn Ranch Road ranges from approximately 68 dB to 71 dB at a distance of 50 feet from the center line of the road. The noise level depends on the ADT adjacent to the road segment. The noise level is approximately 67 dB CNEL at a distance of 50 feet from the center line of Saddleback Ranch Road.

Ambient Noise Measurements

Noise measurements were conducted at, and adjacent to, the site on September 25, 2012, between the hours of 11:00 a.m. and 11:54 a.m. to determine the existing noise levels. The noise measurements were made using a Larson-Davis Laboratories Model 700 integrating sound level meter. Sound level meter calibration documentation is included as Attachment 2 of this document. The sound level meter was calibrated before and after the measurements, and the measurements were conducted with the microphone positioned approximately 5 feet aboveground.

Two noise measurement locations were selected at the project site and are depicted as Sites 1 and 2 on Figure 3. Site 1 was at the north side of Glenn Ranch Road. Site 2 was along the west side of Saddleback Ranch Road. As shown in Table 2, the measured average noise levels were 69 dB at Site 1 and 67 dB at Site 2. The primary noise source at Sites 1 and 2 was the traffic along the adjacent roads.

Site	Description	Date/Time	Leq1	Lmin	Lmax	Cars	MT2	HT3
1	Along north side of Glenn Ranch Road, approximately 50 feet from the center line	9/25/2012 11:00 a.m. to 11:20 a.m.	69	34	84	151	1	0
2	Along west side of Saddleback Ranch Road, approximately 50 feet from the center line	9/25/2012 11:34 a.m. to 11:54 a.m.	67	37	75	193	1	0

Table 2Measured Noise Levels and Traffic Volumes

Note: ¹ Equivalent Continuous Sound Level

2.2 Noise Modeling

The FHWA TNM 2.5 traffic noise prediction model was used to model noise generated by traffic along Glenn Ranch Road and Saddleback Ranch Road. The TNM 2.5 traffic noise prediction model was calibrated first, using the measured average noise levels and the concurrently counted

traffic volumes shown in above Table 2. The same traffic volume and vehicle composition ratios (i.e., percentage of autos, medium trucks and heavy trucks) counted during the noise measurements were used to calibrate the model and verify the input used in the noise model. The modeled noise levels are within one dB of the measured noise levels. This result generally confirms the assumptions used in the noise model. The TNM 2.5 calibration output file is included in Attachment 3 of this document.

3.0 FUTURE CONDITIONS

On-site noise generating activities associated with the project would include short-term construction and long-term noise associated with active uses in the project's onsite parks. The project would generate off-site traffic noise along various roads in the area. In addition, the project site would be exposed to traffic noise along Glenn Ranch Road and Saddleback Ranch Road.

3.1 Short-Term Construction Noise and Vibration

Development activities for the project construction would generally involve the following activities: (1) site preparation, (2) building construction, and (3) paving. Specific project construction details and equipment fleet specifications are not available at this time. However, the following are typical examples of construction equipment that would be expected to be utilized onsite:

- Tractor/Backhoes
- Dozers
- Loaders
- Scrapers
- Graders
- Off-Highway Water Trucks
- Roller
- Cranes
- Forklifts
- Trenchers
- Paving Equipment
- Excavators

DUDEK

- Materials Delivery Trucks
- Concrete Trucks
- Asphalt Trucks
- Pneumatic Tools
- Air Compressors

As demonstrated by the summary above, construction equipment anticipated for project development includes only standard equipment that would be employed for any routine construction project of this scale; construction equipment with substantially higher noise and vibration generation characteristics (such as pile drivers, rock drills, blasting equipment, etc.) are not anticipated for development of the project. Construction noise is difficult to quantify because of the many variables involved including the size of equipment used, percentage of time and number of pieces of equipment which will actually operate on the site. However, maximum construction noise levels at 50 feet would typically range from approximately 75 to 85 dB for the type of equipment anticipated to be used for construction of the project. The range of maximum noise levels associated with various pieces of construction equipment is depicted in Table 3.

The closest existing residences to the construction area are located at the northern property boundary along Millwood Road and Malabar Road, Sorano Cove, Totila Way, and Sassetta Way. Grading and construction activities would occur approximately seven or more feet from the existing multifamily buildings along Sorano Cove, Totila Way and Sassetta Way. The construction of a manufactured slope and other improvements in the northeast corner of the site near the La Quinta stub street offsite would also involve grading and construction activities within approximately 15 feet of existing residences. In all other areas, grading activities would not occur any closer than approximately 40 feet from existing residences. Based on the types of grading equipment operating as close as seven feet to the nearest residences, the construction noise is anticipated to generate maximum noise levels of up to approximately 102 dB at the adjacent residences. This noise level could intermittently occur for a few days when construction equipment is operating immediately adjacent to the residential properties. The remainder of the time the construction noise level would be much less because the equipment would be working in a large area farther away from the existing residences. When the construction equipment is operating residences could be disturbed by the activities.

Construction activities associated with development of the project have the potential to adversely affect adjacent noise-sensitive uses. As such, these noise levels are considered to represent a potentially significant impact. The project would be required to limit construction hours, place mufflers on equipment engines, construct temporary noise barriers, and, to the extent possible,

orient stationary sources to direct noise away from sensitive uses. These measures are included as a part of the noise mitigation (See Section 4.1).

Equipment	Typical Sound Level (dB) 50 feet from Source
Air Compressor	81
Backhoe	80
Compactor	82
Concrete Mixer	85
Concrete Pump	82
Concrete Vibrator	76
Crane, Derrick	88
Crane, Mobile	83
Dozer	85
Generator	81
Grader	85
Impact Wrench	85
Jack Hammer	88
Loader	85
Paver	89
Pile-driver (Impact)	101
Pile-driver (Sonic)	96
Pneumatic Tool	85
Pump	76
Rail Saw	90
Rock Drill	98
Roller	74
Saw	76
Scraper	89
Truck	88

Table 3Construction Equipment Noise Emission Levels

Source: Federal Transit Administration, May 2006, Traffic Noise and Vibration Assessment.

The heavier pieces of construction equipment used at this site could include bulldozers, graders, loaded trucks, water trucks and pavers. Ground-borne vibration information related to construction activities has been collected by Caltrans (Caltrans 2004). Information from Caltrans indicates that continuous vibrations with a peak particle velocity of approximately 0.1 inches/second begin to annoy people. However, according to the American Society of Civil Engineers (ASCE 1974), this annoyance threshold is approximately half of the magnitude which is typically used for protection of "fragile buildings". The ASCE recommends the use of a 0.2

inches/second particle velocity to ensure the avoidance of damage to older existing structures in the project vicinity.

Ground-borne vibration is typically attenuated over short distances. The closest residential buildings to the construction area would be the multifamily homes along Sorano Cove, Totila Way, and Sassetta Way located at the northern boundary of the site approximately 7 feet or more from the grading and construction area. Heavier pieces of construction equipment such as large bulldozers and loaded trucks would have peak particle velocities of approximately 0.60 or less at a distance of 7 feet (FTA 2006). At these distances, the peak particle velocity would be above 0.1 inches/second, the level of vibration which is considered to be perceivable by a sensitive receptor. The peak particle velocity at this distance would also be above the recommended 0.2 inches/second recommended by the ASCE to ensure the avoidance of damage to older existing structures. As a result, ground-borne vibration from grading activities would be considered a potentially significant impact.

As construction BMPs, the project will use lighter-weight grading equipment and static compaction equipment (e.g., a sheep's foot) in any areas that are within 25 feet or less of existing homes or residential buildings immediately adjacent to the project site. Prior to commencement of grading activities within 25 feet of these structures, the project will conduct a video survey of the building foundations and install vibration monitoring equipment inside the property boundary of the complex along the project site boundary.

With the incorporation of these construction BMPs, no buildings adjacent to the project site would be anticipated to be damaged from the ground-borne vibration created during site preparation activities and this vibration impact would be less than significant. As it relates to other construction activities that would create excessive vibration, the greatest sources of ground vibration from construction are associated with pile driving, rock drills, and blasting, none of which are proposed for project development. Therefore, other construction activities are not anticipated to result in continuous vibration levels that typically annoy people, and the vibration impact would be less than significant.

3.2 Exterior Traffic Noise Impact at Receptors

Glenn Ranch Road and Saddleback Ranch Road will be the primary noise sources in the future. Glenn Ranch Road is projected to have a Year 2030 traffic volume of 12,000 ADTs between Saddleback Back Ranch Road and El Toro Road and 30,000 ADTs between Portola Parkway and Saddleback Ranch Road. Saddleback Ranch Road is projected to have a Year 2030 traffic volume of 14,700 ADTs between Glenn Ranch Road and Millwood Road (Wilson and Company 2013). ADT volumes were divided by 10 to estimate hourly segment volumes along these roadways, and these hourly segment volumes were utilized in the model. The locations of modeled receptors are shown in Figure 4. The conversion of hourly Leq to CNEL is based on the hourly traffic counts for the adjacent roads as provided in the project-specific traffic report (Wilson & Company 2013). The 24-hour traffic counts indicate that approximately 75% of the daily traffic volume occurs during the daytime hours, 15% during the evening hours and 10% during the nighttime hours.

The first floor unmitigated noise level would range from 62 to approximately 69 dB CNEL. Noise levels associated with each receptor are shown in Table 4. The noise level would exceed the City's noise guideline by up to 4 dB at some of the lots adjacent to both Glenn Ranch Road and Saddleback Ranch Road.

Receptor	First Floor Noise Level (dB CNEL) Unmitigated	First Floor Noise Level (dB CNEL) Mitigated	Second Floor Noise Level (dB CNEL) Unmitigated
R1	62	51	-
R2	65	53	-
R3	66	54	-
R4	67	56	-
R5	68	56	-
R6	69	58	-
R7	69	57	-
R8	69	57	-
R9	69	57	-
R10	69	56	-
R11	69	54	-
R12	68	53	-
R13	63	49	-
R14	65	49	-
R15	65	51	-
R16	66	53	-
R17	66	54	_
R18	66	55	_
R19	67	55	_
R20	67	55	_
R21	68	58	-
R22	68	61	-
R23	65	63	-
R24	64	63	-
R25	65	63	-

Table 4Exterior Traffic Noise Levels at Modeled Receptors

Receptor	First Floor Noise Level (dB CNEL) Unmitigated	First Floor Noise Level (dB CNEL) Mitigated	Second Floor Noise Level (dB CNEL) Unmitigated
R26	66	60	-
R27	65	60	-
R28	62	60	_
R29	59	56	-
R30	66	60	-
R31	67	60	_
R32	67	63	_
R33	64	64	_
R34	62	61	_
R35	62	60	_
R36	62	60	_
R37	61	60	_
R38	62	61	_
R39	64	63	-
R40	66	63	_
MF1	64	62	63
MF2	64	61	63
MF3	64	62	63
MF4	63	62	63
MF5	63	61	62
Park	63	62	-
Mixed Use	65	63	64

Table 4Exterior Traffic Noise Levels at Modeled Receptors

Source: TNM 2.5 model output. See Attachment 3 for complete results.

The City of Lake Forest General Plan Noise Element establishes that noise levels in excess of 65 dB CNEL would result in a significant noise impact if not mitigated. Exterior noise impacts could be mitigated by constructing 6-foot high noise barriers (i.e., sound walls or berms) at the homes adjacent to Glenn Ranch Road and Saddleback Ranch Road, as depicted in Figure 5. This mitigation is discussed in more detail in Section 4.2.

With inclusion of these sound walls, noise levels would be decreased to 65 dB CNEL or less at all first floor exterior receptors, as shown above in Table 4.

3.3 Interior Traffic Noise Impact at Receptors

The City requires that interior noise levels not exceed a CNEL of 45 dB. Typically, with the windows open, and using standard California construction materials and methods, building shells provide approximately 15 dB of noise reduction. Therefore, residences exposed to an exterior

CNEL greater than 60 dB could result in an interior CNEL greater than 45 dB. Interior noise levels associated with each receptor are shown in Table 5, based on the assumption that building shells provide 15 dB of noise reduction.

Receptor	First Floor Noise Level (dB CNEL) Unmitigated	First Floor Noise Level (dB CNEL) Mitigated*	Second Floor Noise Level (dB CNEL) Unmitigated
R1	47	36	43
R2	50	38	45
R3	51	39	47
R4	52	41	49
R5	53	41	48
R6	54	43	47
R7	54	42	44
R8	54	42	43
R9	54	42	46
R10	54	41	44
R11	54	39	41
R12	53	38	45
R13	48	34	35
R14	50	34	35
R15	50	36	37
R16	51	38	43
R17	51	39	47
R18	51	40	47
R19	52	40	45
R20	52	40	44
R21	53	43	45
R22	53	46	51
R23	50	48	50
R24	49	48	51
R25	50	48	51
R26	51	45	48
R27	50	45	49
R28	47	45	46
R29	44	41	41
R30	51	45	50
R31	52	45	51
R32	52	48	52
R33	49	49	50
R34	47	46	48

Table 5Interior Traffic Noise Levels at Modeled Receptors

DUDEK

Receptor	First Floor Noise Level (dB CNEL) Unmitigated	First Floor Noise Level (dB CNEL) Mitigated*	Second Floor Noise Level (dB CNEL) Unmitigated
R35	47	45	46
R36	47	45	46
R37	46	45	46
R38	47	46	46
R39	49	48	50
R40	51	48	52
R41	49	47	48
R42	49	46	48
R43	49	47	48
R44	48	47	48
MF1	48	46	47
MF2	50	48	49
MF3	47	36	43
MF4	50	38	45
MF5	51	39	47
Mixed Use	52	41	49

Table 5
Interior Traffic Noise Levels at Modeled Receptors

Source: TNM 2.5 model output. See Attachment 3 for complete results.

* This "mitigated" scenario is only accounting for the reduced noise level achieved from the noise wall for exterior noise mitigation. It does not account for any interior noise reduction measures. Those have been identified as part of a future mitigation requirement – refer to Section 4.3 of this report.

The estimated interior noise level would exceed 45 dB CNEL at a majority of the single family lots and multi-family buildings adjacent to Glenn Ranch Road and Saddleback Ranch Road. Thus, single family lots and multi-family buildings adjacent to Glenn Ranch Road and Saddleback Ranch Road would require interior noise studies.

3.4 Off-Site Traffic Noise Impact

The project would generate a net increase of approximately 10,395 ADT (Wilson & Company 2013) and would increase traffic along several existing roads in the area including Glenn Ranch Road, Saddleback Ranch Road, El Toro Road and Portola Parkway. In accordance with the City of Lake Forest CEQA Significance Thresholds Guide, traffic-generated noise impacts along these roadways would be significant if they exceed a 3 dB CNEL increase above an already noisy existing condition (i.e., 65 dB CNEL) at existing residences or other noise-sensitive land uses. As identified in the City of Lake Forest General Plan Noise Element, the City's conditionally acceptable noise level for residences is 65 dB CNEL; therefore, this threshold is utilized. A 3 dB increase is generally considered to be the point of change in environmental noise that can just be detected by the human ear.

The noise level increases associated with the Year 2015 conditions are depicted in Table 6. With the project, the Year 2015 traffic noise would generate a noise level increase of 1 dB CNEL or less along Glen Ranch Road and less than 1 dB CNEL along the other nearby roads as compared to without the project. Therefore, the additional project traffic volume along the adjacent roads would not substantially increase the existing noise level in the project vicinity and the traffic noise level increase is considered less than significant.

Street (Seament)	Future Year 2015 ADT	Future Year 2015 w/ Project ADT	Noise Level Increase (CNEL)			
	Glenn Ranch Road					
West of Saddleback Ranch Rd.	22,000	27,000	1			
East of Saddleback Ranch Rd.	8,000	9,000	1			
	Saddleback Ra	nch Road				
North of Glenn Ranch Rd.	14,000	15,500	<1			
	El Toro R	oad				
South of Glenn Ranch Rd.	16,000	17,000	<1			
North of Portola Pkwy.	15,000	15,000	0			
	Portola Par	kway				
Lake Forrest Dr. to Glenn Ranch Rd.	40,000	43,000	<1			
Glenn Ranch Rd. to I-5	29,000	30,000	<1			
I-5 to El Toro Rd.	41,000	42,000	<1			
El Toro Rd. to Los Alisos Blvd.	38,000	39,000	<1			

Table 62015 Off-Site Traffic Noise Level Increase

The noise level increases associated with the Year 2030 conditions are depicted in Table 7. With the project, the Year 2030 traffic noise would generate a noise level increase of 1 dB CNEL or less along Glen Ranch Road and less than 1 dB CNEL along the other nearby roads as compared to without the project. Therefore, the additional project traffic volume along the adjacent roads would not substantially increase the existing noise level in the project vicinity and the traffic noise level increase is considered less than significant.

Street (Segment)	Future Year 2030 ADT	Future Year 2030 w/ Project ADT	Noise Level Increase (CNEL)
	Glenn Ranch	h Road	
West of Saddleback Ranch Rd.	25,000	30,000	1
East of Saddleback Ranch Rd.	11.000	12.000	<1

Table 72030 Off-Site Traffic Noise Level Increase

Street (Segment)	Future Year 2030 ADT	Future Year 2030 w/ Project ADT	Noise Level Increase (CNEL)
	Saddleback Ra	nch Road	
North of Glenn Ranch Rd.	13,200	14,700	<1
	El Toro R	oad	
South of Glenn Ranch Rd.	24,000	24,000	0
North of Portola Pkwy.	20,000	21,000	<1
	Portola Par	kway	
Lake Forrest Dr. to Glenn Ranch Rd.	47,000	50,000	<1
Glenn Ranch Rd. to I-5	35,000	36,000	<1
I-5 to El Toro Rd.	55,000	55,000	0
El Toro Rd. to Los Alisos Blvd.	47,000	47,000	0

Table 72030 Off-Site Traffic Noise Level Increase

3.5 Outdoor Recreation Areas

Neighborhood parks are intended for active recreational purposes. Each neighborhood park will include minimum improvements, as well as specific recreational components such as athletic fields and/or courts, spectator seating, picnic amenities, and play lots. The Portola Center Area Plan depicts conceptual amenities for each of the six planned neighborhood parks. One neighborhood park is located at the intersection of Glenn Ranch Road and the easterly-most access street to the south of the project site. Noise levels at this park would be 63 dB without mitigation and would, therefore, not exceed the 65 dB threshold established by the City for outdoor recreation areas such as parks.

Additionally, a 5.0-acre public Neighborhood Park is proposed at the southwestern portion of the site. The final design of the park will be reviewed under the City's park planning process and will be consistent with the requirements of the Portola Center Development Agreement.

At any one location, the hourly average sound level associated with recreational noise is difficult to predict due to many variables. These factors include the number of players and spectators, the location of people and the amount and level of conversation and cheering. However, to determine the approximate noise levels that would be generated at the ball fields and predict potential noise impacts, noise measurements that Dudek staff have conducted at several existing recreational parks including Stagecoach Park in Carlsbad, Cardiff Sports Park in Encinitas, and Vista National Little League in Vista were utilized. The proposed project would have similar ball fields as these facilities. The results of these measurements indicate that ball field activities (including use of a PA system) generate a one-hour average noise level of approximately 55 to 65 dB at a distance of 50 feet from the stands and/or spectator areas.

The final locations of stands and spectator areas have not been determined. Therefore, as a worst-case assumption, the stands and spectator areas are assumed to be located adjacent to the closest residences to the athletic fields. Thus, the closest residences are assumed to be located approximately 35 feet from stand or spectator areas (see TTM 15353). The sports activities would generate a one-hour average noise level of approximately 68 dB at the closest residence. The noise level would be 68 dB CNEL at these residences assuming that games are played continuously on all the fields between the hours of 7:00 a.m. and 10:00 p.m. This noise level would exceed the City's General Plan Noise Element 65 dB CNEL noise criterion; therefore, the noise impact would be significant.

3.6 Commercial Property Outdoor Mechanical Equipment

Outdoor mechanical equipment such as heating, ventilating, and air conditioning (HVAC) equipment could be mounted on roofs or at the ground level of the commercial property building. Mechanical equipment plans are not currently available. The noise levels generated by this equipment would vary, but typically range from approximately 45 dB to 55 dB at a distance of 50 feet. A site plan for the commercial property has not been prepared, however, the multi-family land use would be located immediately east of the commercial property. If unmitigated, the mechanical equipment could generate noise levels in excess of the City's Noise Ordinance limits resulting in a significant noise impact.

3.7 Cumulative Noise

Construction noise impacts primarily affect the areas immediately adjacent to the construction site. Thus, because no other projects would be constructed within the vicinity of the project site or in the surrounding area, construction noise impacts would not be cumulatively considerable. Project traffic impacts would be 1 dB or less along adjacent roadways as previously discussed in Section 3.4. Therefore, the increase in noise associated with cumulative traffic would not be cumulatively considerable and is less than significant. As it relates to stationary sources, because no other project sites are located within the immediate vicinity of the proposed project that would involve stationary noise sources, the project would not contribute to a cumulative stationary noise impacts would be less than significant.

4.0 MITIGATION

The following measures will be required to fully mitigate the noise impacts:

4.1 Construction Noise

Prior to Grading Permit issuance, the Applicant shall ensure that:

- All construction equipment, fixed or mobile, shall be equipped with properly operating and maintained mufflers.
- Construction noise reduction methods such as shutting off idling equipment, maximizing the distance between construction equipment staging areas and occupied residential areas, and use of electric air compressors and similar power tools, rather than diesel equipment, shall be used where feasible. Unattended construction vehicles shall not idle for more than 5 minutes when located within 200 feet from residential properties.
- Noise attenuation measures, which may include, but are not limited to, temporary noise barriers or noise blankets around stationary construction noise sources, are implemented where feasible.
- During construction, stationary construction equipment shall be placed such that emitted noise is directed away from or shielded from sensitive noise receivers where feasible.
- During construction, stockpiling and vehicle staging areas shall be located as far as practical from noise sensitive receptors.
- The project shall be in compliance with the City's Municipal Code such that construction and grading activities are limited to the hours of 7:00 a.m. to 8:00 p.m. Monday through Saturday.
- Construction hours, allowable workdays, and the phone number of the job superintendent shall be clearly posted at all construction entrances to allow surrounding property owners and residents to contact the job superintendent if necessary. In the event the City receives a complaint, appropriate corrective actions shall be implemented.
- Two weeks prior to the commencement of construction, notification must be provided to surrounding land uses within 300 feet of a project site disclosing the construction schedule, including the various types of activities that would be occurring throughout the duration of the construction period. This notification shall give a contact phone number for any questions or complaints. All complaints shall be responded to in a method deemed satisfactory by the City of Lake Forest.

4.2 Exterior Noise

Exterior noise impacts could be mitigated by constructing noise barriers up to six feet in height (i.e., sound walls or berms) at the homes adjacent to Glenn Ranch Road and Saddleback Ranch Road, as depicted in Figure 5. Noise barriers must have a surface density of at least 3.5 pounds per square foot, and have no openings or cracks. The walls may be constructed of five-eighth-inch thick acrylic glass, any masonry material, an earthen berm or a combination of these materials.

4.3 Future Noise Studies

Interior Noise

An interior noise study will be required for the homes and multi-family buildings adjacent to, and with a direct line-of-sight of, Glenn Ranch Road and Saddleback Ranch Road to ensure that the interior CNEL would not exceed 45 dB. The interior acoustical analysis will be required prior to issuance of building permits. To mitigate the interior noise impact, the homes and multi-family buildings would most likely require air-conditioning and/or mechanical ventilation and possibly sound-rated windows.

Commercial Property Outdoor Mechanical Equipment Noise Study

Prior to issuance of building permits, a noise assessment shall be prepared for the commercial property outdoor mechanical equipment. The noise assessment shall identify any noise control measures necessary to comply with the City's Noise Ordinance requirements.

4.4 Outdoor Recreation Noise

All stands and general spectator areas shall be located a minimum of 150 feet from the closest residential property line. Alternatively, noise barriers (e.g., sound walls or berms) up to six feet in height shall be constructed along the western boundaries of all lots with a direct line-of-sight to the proposed 5-acre public Neighborhood Park.

The parks shall not be used between the hours of 10:00 p.m. and 7:00 a.m.

5.0 BEST MANAGEMENT PRACTICES

As discussed in Section 3.1, the project will use lighter-weight grading equipment and static compaction equipment (e.g., a sheep's foot) in any areas that are within 25 feet or less of the residential buildings immediately adjacent to the project site. Prior to commencement of grading activities within 25 feet of these buildings, the project will conduct a video survey of the building

foundations and install vibration monitoring equipment inside the property boundary for each building within 25 feet of grading activities.

This concludes our noise assessment. Please contact me at 760.479.4855 or mkomula@dudek.com if you have any questions.

Sincerely,

10 Komula

Senior Acoustician

Att: Figures 1–5 Attachment 1, Definitions Attachment 2, Sound Meter Calibration Documentation Attachment 3, Traffic Noise Modeling Input/Output and Calibration Attachment 4, Noise Measurement Field Data Sheets

DUDEK

REFERENCES

- American Society of Civil Engineers (ASCE). 1974. Journal of Construction Division, Vibrations During Construction Operations, 100 No. CO3, pp. 239-246, September.
- Caltrans (California Department of Transportation). 2004. *Transportation Related Earthborne Vibrations*. January 23.
- City of Lake Forest. 1994. Lake Forrest General Plan Safety and Noise Element. June 21.
- City of Lake Forest. 2009. CEQA Significance Thresholds Guide. Published November 20, 2001. Revised March 2009.
- City of Lake Forest. 2010. City of Lake Forest Municipal Code, Title 11 Peace and Safety, Division 2, Chapter 11.16 Noise Control. June 1.
- FHWA (Federal Highway Administration). 2004. FHWA Traffic Noise Model Users Guide (Version 2.5 Addendum). April.

FTA (Federal Transit Administration). 2006. Transit Noise and Vibration Impact Assessment.

Wilson & Company. 2013. Portola Center Project Traffic Impact Study. January.

Run	Statutes		
		M2	
	MI		
	200 400 Feet SOURCE: Hunsaker & Associates January 2013		
DODEK			

Portola Center - Noise Study

6888-01

FIGURE 3 Noise Monitoring Locations

Portola Center - Noise Study

7		
) is a los	P	
		6.
		6'
1201	6	6'
n real	A NA STAND	
1.12		
Project B Noise Ba	bject Boundary ise Barrier	
		the y contraction of the
DUDEK	SOURCE: Hunsaker & Associates January 2013	
6888-01	Portola Center - Noise Study	

FIGURE 5 Noise Barrier Heights and Locations

ATTACHMENT 1 *Definitions*

<u>Term</u>	Definition
Ambient Noise Level	The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.
A-Weighted Sound Level, dBA	The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear and correlates well with subjective reactions to noise.
Community Noise Equivalent Level	CNEL is the A-weighted equivalent continuous sound exposure level for a 24-hour period with a ten dB adjustment added to sound levels occurring during nighttime hours (10 pm to 7 am) and a five dB adjustment added to the sound levels occurring during the evening hours (7 pm to 10 pm).
Decibel, dB	A unit for measuring sound pressure level and is equal to 10 times the logarithm to the base 10 of the ratio of the measured sound pressure squared to a reference pressure, which is 20 micropascals.
Time-Average Sound Level	The sound level corresponding to a steady state sound level containing the same total energy as a time varying signal over a given sample period. It is designed to average all of the loud and quiet sound levels occurring over a time period.

ATTACHMENT 2 Sound Meter Calibration Documentation

ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC and APLAC signatory)

NVLAP Lab Code: 200625-0

Calibration Certificate No.27212

Instrument:	Sound Level Meter / Dosimeter	Date Calibrated:	9/20/2012 Cal	Due:
Model:	700	Status:	Received	Sent
Manufacturer:	Larson Davis	In tolerance:	x	Х
Serial number:	4086B0724	Out of tolerance:		
Tested with:	Microphone	See comments:		
		Contains non-acc	redited tests:	_Yes <u>X_</u> No
Type (class):	2	Calibration servic	e: Basic X	Standard
Customer: Tel/Fax:	Dudek 760-942-5147 / -632-0164	Address: 605 T Encin	hird Street hitas, CA 92024	

Tested in accordance with the following procedures and standards:

Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM & Dosimeters – Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:

Instrument - Manufacturer	Description	S/N	Cal. Date	Traceability evidence	Cal. Due
				Cal. Lab / Accreditation	
483B-Norsonic	SME Cal Unit	25747	Jul 2, 2012	Scantek, Inc./ NVLAP	Jul 2, 2013
DS-360-SRS	Function Generator	61646	Nov 16, 2011	ACR Env./ A2LA	Nov 16, 2013
34401A-Agilent Technologies	Digital Voltmeter	MY41022043	Dec 9, 2011	ACR Env. / A2LA	Dec 9, 2012
DPI 141-Druck	Pressure Indicator	790/00-04	Dec 13, 2010	ACR Env./ A2LA	Dec 13, 2012
HMP233-Vaisala Oyj	Humidity & Temp.	V3820001	Sep 6, 2012	ACR Env./ A2LA	Mar 6, 2014
PC Program 1019 Norsonic	Calibration software	v.5.2	Validated Mar 2011	Scantek, Inc.	-
1251-Norsonic	Calibrator	30878	Dec 13, 2011	Scantek, Inc./ NVLAP	Dec 13, 2012
4226-Brüel&Kjær	Multifunction calibrator	2305103	Jul 24, 2012	Scantek, Inc./ NVLAP	Jul 24, 2013

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:

accive theory theory and the second accive the second theory and the second theory accive and the second accive accive accive and

Temperature (°C)	Barometric pressure (kPa)	Relative Humidity (%)
23.5 °C	100.537 kPa	47.1 %RH

Calibrated by:	Valentin Buzduga	Authorized signatory:	Mariana Buzduga
Signature	Mil	Signature	· lui-
Date	9/20/20/2	Date	9/20/2012

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory. This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Document stored Z:\Calibration Lab\SLM 2012\LD700_4086B0724_M1.doc

Page 1 of 2

ATTACHMENT 3

Traffic Noise Modeling Input/Output and Calibration

INPUT: ROADWAYS				*	6		Portol	Center			
Dudek					30 January 2	013					
B. Grover					TNM 2.5						
INPUT: ROADWAYS							Average p	avement typ	e shall be	used unles	s
PROJECT/CONTRACT:	Portola (center					a State hi	Jhway agenc	y substant	tiates the u	Se
RUN:	Calibrati	on Run					of a differ	ant type with	the approv	val of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	rol		Segment	
				×	۲	Z	Control	Speed	Percent	Pvmt	n
							Device	Constraint	Vehicles Affected	Type	Struct?
	æ			ft	ff.	ft		mph	%		
Glenn Ranch Road EB	24.0	point1	F	115.2	1,617.1	940.00				Average	
		point2	2	357.9	1,613.1	965.00				Average	
		point3	ŝ	556.8	1,581.3	00.066				Average	
		point4	4	771.6	1,501.7	970.00				Average	
		point5	5	938.7	1,422.1	950.00					
Glenn Ranch Road WB	24.0	point6	9	954.6	1,457.9	950.00				Average	
		point7	2	791.5	1,541.5	970.00				Average	
		point8	8	564.7	1,625.0	00.066				Average	
		point9	6	357.9	1,660.8	965.00				Average	
1		point10	10	107.3	1,660.8	940.00					
Saddleback Ranch Road NB	24.0	point35	35	1,042.1	1,414.2	975.00				Average	
		point36	36	1,085.9	1,477.8	945.00				Average	
		point37	37	1,304.7	1,788.1	1,000.00				Average	
		point38	38	1,439.9	1,979.1	984.00				Average	
	×	point39	39	1,567.2	2,158.1	1,020.00					
Saddleback Ranch Road SB	24.0	point40	40	1,539.4	2,174.0	1,020.00				Average	
		point41	41	1,412.1	1,991.0	984.00				Average	
		point42	42	1,280.8	1,804.0	1,000.00				Average	
		point43	43	1,062.0	1,501.7	945.00				Average	
		point44	44	1,010.3	1,434,1	975.00					

C:\TNM25\PROGRAM\PORTOLA\Calibration Run

30 January 20

-

INPUT: TRAFFIC FOR LAeq1h Volumes						•	ortola Ce	nter				
Dudek				30 Jan	uary 201	<u>8</u>						
B. Grover				TNM 2.	.5							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Portola Cente	L										
RUN:	Calibration R	un										
Roadway	Points											
Name	Name	No.	Segmen									
			Autos		MTruck	s	HTruck	s	Buses		Motorcy	cles
			>	S	>	S	>	S	>	S	>	s
			veh/hr	hqm	veh/hr	hdm	veh/hr	hdm	veh/hr	hdm	veh/hr	mph
Glenn Ranch Road EB	point1	-	227	50		2	0	0	0	0	0	0
	point2	5	227	50		ā	0		0	0	0	
	point3	e	227	50		ũ	0		0	0	0	
	point4	4	227	50		ā	0		0	0	0	
	point5	5										
Glenn Ranch Road WB	point6	9	227	50		2	0		0	0	0	0
	point7	2	227	50		ũ	0		0	0	0	0
	point8	8	227	50		2	0		0	0	0	0
	point9	6	227	50		2	0		0	0	0	0
	point10	10										
Saddleback Ranch Road NB	point35	35	290	50		5	0	0	0	0	0	0
	point36	36	290	50		2	0		0	0	0	0
	point37	37	290	50		5	0	0	0	0	0	0
	point38	38	290	50		2	0	0	0	0	0	0
	point39	39										
Saddleback Ranch Road SB	point40	40	290	50		ũ	0	_	0	0	0	0
	point41	41	290	50		5	0		0	0	0	0
	point42	42	290	50		ũ	0	0	0	0	0	0
	point43	43	290	50		5	0	0	0	0	0	0
	point44	44										

C:\TNM25\PROGRAM\PORTOLA\Calibration Run

.

*

INPUT: RECEIVERS

Portola Center

Dudek B. Grover

30 January 2013 TNM 2.5

		(
		Ĺ
		ī
		ē
		Ļ
		l
		ſ

PROJECT/CONTRACT: INPUT: RECEIVERS

Portola Center

	ation R	un								
Receiver										20 02
Name No. #	#DUs	Coordinates	(ground)		Height	Input Sou	nd Levels a	ind Criteria		Active
	_	×	7	N	above	Existing	Impact Cri	teria	NR	'n
					Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
		Ĥ	ft	ft	Ĥ	dBA	dBA	đB	đB	
M1 55	1	347.5	1,675.0	1,000.00	4.92	00.0	99	10.0	8.0	×
M2 56	1	1,240.0	1,830.0	1,100.00	4.92	0.00	99	10.0	8.(λ

C:\TNM25\PROGRAM\PORTOLA\Calibration Run

RESULTS: SOUND LEVELS								Portola Co	enter					
		-												
Dudek								30 Januar	y 2013					
B. Grover								TNM 2.5						
								Calculate	d with TNN	12.5				
RESULTS: SOUND LEVELS														
PROJECT/CONTRACT:		Portola	Center											
RUN:		Calibra	tion Run											-
BARRIER DESIGN:		INPUT	HEIGHTS						Average pi	avement typ	e shall be use v substantiat	ed unles	رم برم	
ATMOSPHERICS:		68 deg	F, 50% R	т					of a differ	ent type with	approval of I	HWA.	k	
Receiver														
Name	No.	#DUS	Existing	No Barri	er					With Barrier				
			LAeq1h	LAeq1h			Increase over	r existing	Type	Calculated	Noise Reduc	tion		
				Calculat	ed Cri	ť'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calcula	ated
								Sub'l Inc					minus	
												_	Goal	_
			dBA	dBA	đB	A	dB	dВ		dBA	dB	dВ	qв	
M1	55		Ö	0	68.0	99	68.0	0 10	Snd Lvl	68.0	0.0		8	-8.0
M2	56	-	0	0	65.0	99	65.0	10		65.0	0.0		00	-8.0
Dwelling Units		# DUs	Noise R	eduction										
			Min	Avg	M	X								
			dB	ß	đ	_								
All Selected		2	0.	0	0.0	0.0								
All Impacted		-	0	0	0.0	0.0								
All that meet NR Goal		0	0	0	0.0	0.0								

C:\TNM25\PROGRAM\PORTOLA\Calibration Run

30 January 2013

-

INPUT: ROADWAYS							Porto	a Center			
Dudek B. Grover					30 January 2 TNM 2.5	013					
INPUT: ROADWAYS							Average	pavement tyl	oe shall be	used unles	S
RUN:	1st Floor	enter Unmitigate	p				a state n of a diffe	gnway agen rent type witł	cy substant the appro-	uates the u val of FHW	A
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Cor	trol		Segment	
				×	≻	N	Control Device	Speed Constraint	Percent Vehicles Affected	Pvmt Type	On Struct?
	Ĥ.			H.	ff	ff		mph	%		
Glenn Ranch Road EB	24.0	point1	-	115.2	1,617.1	940.00			-	Average	
		point2	2	357.9	1,613.1	965.00				Average	
		point3	S	556.8	1,581.3	990.06				Average	
		point4	4	771.6	1,501.7	970.0(Average	
		point5	5	938.7	1,422.1	950.0(
Glenn Ranch Road WB	24.0	point6	9	954.6	1,457.9	950.0(Average	
		point7	7	791.5	1,541.5	970.0(0			Average	
		point8	8	564.7	1,625.0	990.066				Average	
		point9	ð	357.9	1,660.8	965.0(0			Average	
		point10	10	107.3	1,660.8	940.0(
Glenn Ranch Road EB 2	12.0	point11	11	1,014.3	1,358.5	1,000.0(Average	
		point12	12	1,292.7	1,107.9	1,091.0(Average	
		point13	13	1,551.3	817.5	1,048.0(Average	
		point14	14	1,790.0	566.8	1,005.0(Average	
		point15	15	2,112.2	312.2	1,100.0(Average	
		point16	16	2,422.5	173.0	1,100.0(Average	
		point17	17	2,796.4	125.3	1,100.0(Average	
		point18	18	3,190.3	165.1	1,020.0(Average	
		point19	19	3,512.5	200.9	1,080.0(0			Average	
		point20	20	3,826.8	181.0	1,000.0(
Glenn Ranch Road WB 2	24.0	point21	21	3,826.8	220.8	1,000.00				Average	
		point22	22	3,496.6	240.6	1,080.0(Average	
		point23	23	3,170.4	204.8	1,020.00				Average	
		point24	24	2,796.4	169.0	1,100.00				Average	
		point25	25	2,438.4	212.8	1,100.00				Average	

C:\TNM25\PROGRAM\PORTOLA\1st Floor Unmitigated\1st Floor Unmitigated

~

INFUL NUMBERS								
		point26	26	2,136.1	344.1	1,100.00	Average	
		point27	27	1,825.8	590.7	1,005.00	Average	
		point28	28	1,587.1	837.4	1,048.00	Average	
		point29	29	1,320.6	1,127.8	1,091.00	Average	
		point30	30	1,038.1	1,390.3	1,000.00		
Saddleback Ranch Road NB	24.0	point35	35	1,042.1	1,414.2	975.00	Average	
		point36	36	1,085.9	1,477.8	945.00	Average	
		point37	37	1,304.7	1,788.1	1,000.00	Average	
		point38	38	1,439.9	1,979.1	984.00	Average	
		point39	39	1,567.2	2,158.1	1,020.00		
Saddleback Ranch Road SB	24.0	point40	40	1,539.4	2,174.0	1,020.00	Average	
		point41	41	1,412.1	1,991.0	984.00	Average	
		point42	42	1,280.8	1,804.0	1,000.00	Average	
		point43	43	1,062.0	1,501.7	945.00	Average	
		point44	44	1,010.3	1,434.1	975.00		

Portola Center

INPUT: ROADWAYS

C:\TNM25\PROGRAM\PORTOLA\1st Floor Unmitigated\1st Floor Unmitigated

Dudek a January 2013 INUT: TRAFTIC FOR LAGITIN Volumes Particle Contract Paritel Contract	Judek 3. Grover NPUT: TRAFFIC FOR LAeq1h Volumes PROJECT/CONTRACT: Portola Co RUN: 1st Floor RUN: 1st Floor Roadway Points		i									
INN 25: TAN 25: A TAN	 3. Grover NPUT: TRAFFIC FOR LAeq1h Volumes Portola Contract: Portola Contract: 1st Floor 8000 May 		31) Janua	iry 2013							
International contraction for the part of t	NPUT: TRAFFIC FOR LAeq1h Volumes PROJECT/CONTRACT: Portola Co NUN: 1st Floor Roadway Points		F	NM 2.5								
RoadwayFoinsAnneNameNameNameNotice stateAntosMotoce stateMotoce stateNameAntosNameNameNameNameNameNameNameNameAntosNameNameNameNameNameNameNameGlenn Ranch Road EBpoint111440503050000point33144050305030500000point351440503050305000000point3561440503050305000000point35614405030503050000000point3561440503050305000	Roadway Points	enter Jnmitigateo	-									
NameNameNo.SegmentActorsMutorsystemMutorsystemMutorsystemAutosAutosVVNVVNVNAutosVerhitNphVerhitNphVerhitNphVNNoGlenn Ranch Road EBpoint2214405030500000point33144050305030500000point33144050305030500000point355144050305030500000point3551440503050305000000point3614405030503050000000point3114405030503050000000point31144050305030503050000000point31157650125012501250000000point315765012501250125000000000 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												
Autor Mutuox Mutuox<	Name	No.	Segment									
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$			Autos	Σ	Trucks		HTrucks		Buses		Motorcy	/cles
Amplifier Implifier Moth/life <			S	>		S	>	S	>	s	>	s
Glern Ranch Road EB point1 1 1440 50 30 50 50 30 50 0 0 0 point2 2 1440 50 30 50 30 50 0<			veh/hr m	ph ve	sh/hr	hdm	veh/hr	hdm	veh/hr	hqm	veh/hr	hdm
mining mining<	Glenn Ranch Road EB	-	1440	50	30	50	30	50	0		0	
point3 3 1440 50 30 50 50 70 7 9 point4 point5 5 1440 50 30 50 0 <td< td=""><td>point2</td><td>2</td><td>1440</td><td>50</td><td>30</td><td>50</td><td>30</td><td>50</td><td></td><td></td><td>0</td><td></td></td<>	point2	2	1440	50	30	50	30	50			0	
model point4 4 1440 50 30 50 50 6 0 0 0 Glenn Ranch Road WB point6 5 1 1440 50 30 50 50 30 50 0 0 0 0 0 Glenn Ranch Road WB point6 6 1440 50 30 50 30 50 0	point3	en l	1440	50	30	50	30	50			0	
Glenn Ranch Road WB point5 5 1 <td>point4</td> <td>4</td> <td>1440</td> <td>50</td> <td>30</td> <td>50</td> <td>30</td> <td>50</td> <td></td> <td></td> <td>0</td> <td></td>	point4	4	1440	50	30	50	30	50			0	
Glenn Ranch Road WB point6 6 1440 50 30 50 50 0 </td <td>point5</td> <td>5</td> <td></td>	point5	5										
(1,1) $(1,1)$ <	Glenn Ranch Road WB	9	1440	50	30	50	30	50	0	0	0	
matrixpoints8144050305050000 $redpoint3914405030505000000redpoint10101014576501250125000000redpoint12115765012501250000000redpoint13135765012501250000000redpoint13135765012501250000000redpoint131357650125012500000000redpoint13135765012501250000000redpoint131357650125012500000000redpoint1313576501250125000000000redpoint13135765012501250000000000000000000<$	point7	2	1440	50	30	50	30	50	0	0	0	
	point8	8	1440	50	30	50	30	50			0	
Reduct Manch Rande EB 2point 101010101256501250000Glenn Ranch Road EB 2point 111157650125000000point 1212576501250125000000point 1313576501250125000000point 1414576501250125000000point 1515576501250125000000point 1616576501250125000000point 1617576501250125000000point 1717576501250125000000point 18185765012501250000000point 181857650125012500000000point 181857650125012500000000point 202020202020201250	point9	6	1440	50	30	50	30	50			0	
Glenn Ranch Road EB 2 point1 11 576 50 12 50 12 50 0	point10	10										
modulationpoint12125765012501250000point13point131357650125012500000point1414576501250125000000point151557650125012500000point161657650125012500000point16171757650125012500000point1616576501250125000000point1818576501250125000000point1818576501250125000000point202020201250125000000feature18point20202020201250000000feature18point20202020201250125000000feature18point2020202020201250000000 </td <td>Glenn Ranch Road EB 2 point11</td> <td>11</td> <td>576</td> <td>50</td> <td>12</td> <td>50</td> <td>12</td> <td>50</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	Glenn Ranch Road EB 2 point11	11	576	50	12	50	12	50	0	0	0	
\cdot	point12	12	576	50	12	50	12	50			0	
	point13	13	576	50	12	50	12	50	0	0	0	
	point14	14	576	50	12	50	12	50	0	0	0	
	point15	15	576	50	12	50	12	50	0	0	0	_
$\label{eq:constraints} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	point16	16	576	50	12	50	12	50	0	0	0	
Matrix Matrix<	point17	17	576	50	12	50	12	50	0	0	0	
Matrix Matrix<	point18	18	576	50	12	50	12	50	5	0	0	
Glenn Ranch Road WB 2 point20 20 20 12 50 12 50 0	point19	19	576	50	12	50	12	50	J	0	0	
Glenn Ranch Road WB 2 point21 21 576 50 12 50 0	point20	20										
point22 22 576 50 12 50 12 50 0 0	Glenn Ranch Road WB 2	21	576	50	12	50	12	50	U	0	0	
	point22	22	576	50	12	50	12	50	J	_	0	

NPUT: TRAFFIC FOR LAeq1h Volumes						Por	tola Cent	ter				
	point23	23	576	50	12	50	12	50	Ģ	0	0	0
	point24	24	576	50	12	50	12	50	0	0	0	0
	point25	25	576	50	12	50	12	50	0	0	0	0
	point26	26	576	50	12	50	12	50	0	0	0	0
	point27	27	576	50	12	50	12	50	0	0	0	0
	point28	28	576	50	12	50	12	50	0	0	0	0
	point29	29	576	50	12	50	12	50	0	0	0	0
	point30	30										
Saddleback Ranch Road NB	point35	35	706	50	15	50	15	50	0	0	0	0
	point36	36	706	50	15	50	15	50	0	0	0	0
	point37	37	706	50	15	50	15	50	0	0	0	0
	point38	38	706	50	15	50	15	50	0	0	0	0
	point39	39										
Saddleback Ranch Road SB	point40	40	706	50	15	50	15	50	0	0	0	0
	point41	41	706	50	15	50	15	50	0	0	0	0
	point42	42	706	50	15	50	15	50	0	0	0	0
	point43	43	706	50	15	50	15	50	0	0	0	0
	point44	44										

C:\TNM25\PROGRAM\PORTOLA\1st Floor Unmitigated\1st Floor Unmitigated

Portola Center

INPUT: RECEIVERS

×	
Φ	
פ	
2	

B. Grover

30 Jai

2		
É.		
2		
>		
3	ŝ	
	N	
	5	

~		
201		
2		
Ina	5	
	5	

INPUT: RECEIVERS												
PROJECT/CONTRACT:	Portola	i Cente	ar									
RUN:	1st Flo	or Unr	nitigated									
Receiver					6							
Name	No.	#DUs	Coordinate	ss (ground)			Height	Input Sou	nd Levels	and Criteria		Active
			×	7	N		above	Existing	Impact Cri	iteria	NR	. <u>e</u>
				·			Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
			ſţ	Ŧ	#		ft	dBA	dBA	dB	đB	_
R1	3	-	83	.4 1,96	33.0	1,058.00	4.92	0.00	66	10.0	8.	X
R2	4	-	214	.7 1,86	37.6	1,052.00	4.92	0.00	66	10.0	αÖ	7
R3	5	-	338	.0 1,85	51.8	1,050.00	4.92	0.00	99	10.0	°.	7
R4	9	-	572	.7 1,78	38.1	1,047.50	4.92	00.0	99	10.0	8.	7
R5	7	-	787	.5 1,69	32.6	1,045.00	4.92	00.0	99	10.0	α	7
R6	80	-	962	.6 1,59	93.2	1,046.00	4.92	0.00	66	10.0	8.	Y
R7	0	-	1,058	.0 1,65	52.9	1,046.00	4.92	0.00	99	10.0	8.	Y
R8	10	-	1,141	.6 1,73	36.4	1,050.00	4.92	0.00	66	10.0	8.	Y
R9	1	-	1,177	.4 1,78	34.1	1,055.00	4.92	00.0	66	10.0	8.	Y
R10	12	-	1,292	.7 1,92	27.3	1,065.00	4.92	0.0	66	10.0	8.	Y
R11	13	-	1,368	.3 2,00	34.8	1,073.00	4.92	0.00	66	10.0	8.	γ
R12	14	-	1,404	.1 2,1	10.3	1,074.00	4.92	0.00	66	10.0	8.	Y
R13	15	-	1,662	7 2,00	96.90	1,150.00	4.92	0.00	66	10.0	8.	7
R14	16	-	1,551	.3 1,87	79.6	1,125.00	4.92	0.00	66	10.0	8	7
R15	17	-	1,432	1,67	76.7	1,121.00	4.92	00.0	66	10.0	8.	7
R16	18	-	1,332	5 1,5'	13.6	1,114.00	4.92	0.00	99	10.0	8.	γ
R17	19	-	1,380	1,29	98.8	1,107.00	4.92	0.00	66	10.0	8.	Y
R18	20		1,527	.4 1,08	34.0	1,092.00	4.92	0.00	99	10.0	8.	γ
R19	21	-	1,634	8.	32.8	1,085.00	4.92	0.00	66	10.0	8.	Y
R20	22	-	1,722	.4 82	25.4	1,082.00	4.92	0.00	66	10.0	8.	Y
R21	23	-	1,877	.5 65	50.4	1,085.00	4.92	00.0	66	10.0	8.	7
R22	24	-	2,068	.5 47	75.3	1,087.00	4.92	0.00	66	10.0	α	>

C:\TNM25\PROGRAM\PORTOLA\1st Floor Unmitigated\1st Floor Unmitigated

INPUT: RECEIVERS			100				Por	tola Center			
R23	25	-	2,275.3	360.0	1,083.00	4.92	00.0	99	10.0	8.0	7
R24	26	-	2,474.2	296.3	1,083.00	4.92	00.0	66	10.0	8.0	≻
R25	27	-	2,716.9	284.4	1,087.00	4.92	00.0	99	10.0	8.0	≻
R26	28	-	2,963.5	312.2	1,091.00	4.92	00.0	99	10.0	8.0	≻
R27	29	1	3,202.2	356.0	1,094.00	4.92	00.0	99	10.0	8.0	≻
R28	30	-	3,417.0	495.2	1,102.00	4.92	00.0	99	10.0	8.0	≻
R29	31	-	3,516.5	682.2	1,105.00	4.92	00.0	99	10.0	8.0	~
R30	32	-	3,293.7	73.6	1,044.50	4.92	00.0	99	10.0	8.0	≻
R31	33	-	3,162.4	81.5	1,044.00	4.92	00.0	99	10.0	8.0	≻
R32	34	-	3,090.8	85.5	1,043.50	4.92	00.0	99	10.0	8.0	≻
R33	35	-	2,975.5	73.6	1,047.00	4.92	00.0	99	10.0	8.0	≻
R34	36	-	2,804.4	61.6	1,045.00	4.92	00.0	99	10.0	8.0	≻
R35	37	-	2,708.9	53.7	1,046.00	4.92	00.0	99	10.0	8.0	≻
R36	38	-	2,625.4	53.7	1,049.00	4.92	00.0	99	10.0	8.0	≻
R37	39	-	2,525.9	65.6	1,050.00	4.92	00.0	99	10.0	8.0	≻
R38	40	-	2,426.5	89.5	1,056.00	4.92	00.0	99	10.0	8.0	≻
Park	41	-	2,199.7	204.8	1,072.00	4.92	00.0	99	10.0	8.0	≻
R39	42	+	2,112.2	236.7	1,070.50	4.92	00.0	99	10.0	8.0	≻
R40	43	-	1,984.9	304.3	1,071.00	4.92	00.0	99	10.0	8.0	≻
MF1	44	-	1,809.9	352.0	1,042.00	4.92	00.0	99	10.0	8.0	≻
MF2	45	-	1,714.4	427.6	1,040.00	4.92	00.0	99	10.0	8.0	≻
MF3	46	-	1,511.5	618.6	1,036.00	4.92	00.0	99	10.0	8.0	≻
MF4	47	-	1,400.1	773.7	1,034.00	4.92	00.0	99	10.0	8.0	≻
MF5	48	-	1,221.1	980.6	1,030.00	4.92	00.0	99	10.0	8.0	≻
MU1	49	-	1,133.6	1,127.8	1,028.00	4.92	00.0	99	10.0	8.0	≻

C:\TNM25\PROGRAM\PORTOLA\1st Floor Unmitigated\1st Floor Unmitigated

RESULTS: SOUND LEVELS							Portola C	enter					ſ
Dudek							30 Janua	ITV 2013					
B. Grover							TNM 2.5						
							Calculate	ed with TN	M 2.5				
	C												
PROJECT/CONTRACT: RUN:	1st	Floor	Jenter Unmitia	ated						12.1			
BARRIER DESIGN:	I.	UT H	IEIGHTS					Average	pavement typ	e shall be us	ed unless		
ATMOSPHERICS:	68	deg F	: 50% Rł	÷				a State h of a diffe	iighway agenc rent tvpe with	cy substantiat approval of	tes the us FHWA.	Ð	
Receiver													
Name	No. #DL	s	Existing	No Barriel					With Barrier				
			.Aeq1h	LAeq1h		Increase ove	sr existing	Type	Calculated	Noise Redu	ction	200	
				Calculated	1 Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated	p
							Sub'l Inc					Goal	
		-O	I BA	dBA	dBA	명	đB		dBA	đđ	đB	g B B	
R1	3	-	0.0	.9	1.5	36 61.	5 1(-	61.5	0.0	0	8	-8.0
R2	4	-	0.0	ê e	9 5.1	36 64.	5 1(1	64.5	0.0	0	8	-8.0
R3	5	-	0.0	e e	3.0 6	36 66.	1(0 Snd Lvl	66.0	0.0	0	8	-8.0
R4	9	-	0.0	9	7.4 (36 67.	4 1(0 Snd Lvl	67.4	0.0		8	-8.0
R5	2	-	0.0	6	3.3 (36 68.	3 1(0 Snd Lvl	68.3	0.0		8	-8.0
R6	80	-	0.0	6	3.2 6	36 69.	2 1(0 Snd Lvl	69.2	0.0		8	-8.0
R7	6	-	0.0	6	3.8	36 68.	8 1(0 Snd Lvl	68.5	0.0		8	-8.0
R8	10		0.0	6	3.2 (36 69.	2 1(0 Snd Lvl	69.2	0.0		8	-8.0
R9	1	-	0.0	ě.	3.1 6	36 69.	1 1(0 Snd Lvl	69.1	0.0		8	-8 -0.0
R10	12	-	0.0	ě.	3.3 6	36 69.	3 1(0 Snd Lvl	69.3	0.0	0	8	-8.0
R11	13	-	0.0	99	9.0	36 69.	0 1(0 Snd Lvl	69.0	0.0	0	8	-8.0
R12	14	-	0.0	0	,9 6.7	36 67.	9 1(0 Snd Lvl	67.5	0.0	0	8	-8.0
R13	15	-	0.0	6	3.4 6	36 63.	4 1(1	63.4	0.0	0	8	-8.0
R14	16	-	0.0	6	5.2 6	36 65.	2 1(65.2	0.0		8	-8.0
R15	17	-	0.0	6	5.4 6	36 65.	4 1(1	65.4	0.0	0	8	-8.0
R16	18	-	0.0	6	5.9 6	36 65.	9 1(65.5	0.0	_	8	-8.0
R17	19	-	0.0	6	5.7 6	36 65.	7 1(65.7	0.0		8	-8.0
R18	20	-	0.0	66	3.0 6	36 66.	0 1(D Snd Lvl	66.0	0.0	0	8	-8.0
R19	21	-	0.0	66	3.5 6	36 66.	5 1(D Snd Lvl	66.5	0.0		8	-8.0
R20	22	-	0.0	66	3.9 6.	36 66.	9 1(D Snd Lvi	6.99	0.0	0	8	-8.0
R21	23	٢	0.0	67	.6 6	36 67.	6 1(D Snd Lvl	67.6	0.0		8	-8.0
R22	24	-	0.0	96	3.4 E	36 68.	4 10	D Snd Lvl	68.4	0.0	0	8	-8.0
R23	25	-	0.0	9	1.7 6	36 64.	7 1(64.7	0.0	_	Ψ ∞	-8.O
C:\TNM25\PROGRAM\PORTOLA\1st Flo	or Unmitiga	ted/1	st Floor L	Jnmitigated	_				-				

RESULTS: SOUND LEVELS						Ä	ortola Ce	nter				
R24	26	-	0.0	63.6	99 66	63.9	10	1	63.9	0.0	80	-8.0
R25	27	-	0.0	64.6	66	64.6	10	1	64.6	0.0	80	-8.0
R26	28	-	0.0	65.6	66	65.6	10	Í	65.6	0.0	80	-8.0
R27	29	-	0.0	64.6	66	64.6	10		64.6	0.0	80	-8.0
R28	30	-	0.0	61.6	99 66	61.9	10	Ĩ	61.9	0.0	80	-8.0
R29	31	-	0.0	58.5	99	58.5	10	1	58.5	0.0	80	-8.0
R30	32	-	0.0	65.5	99	65.5	10	1	65.5	0.0	80	0.8- 0
R31	33	-	0.0	66.7	66	66.7	10	Snd Lvl	66.7	0.0	8	-8.0
R32	34	-	0.0	67.0	99	67.0	10	Snd Lvl	67.0	0.0	8	-8.0
R33	35	-	0.0	64.3	99	64.3	10	1	64.3	0.0	80	-8.0
R34	36	-	0.0	61.7	66	61.7	10	1	61.7	0.0	8	-8.0
R35	37	-	0.0	62.0	99	62.0	10	1	62.0	0.0	80	-8.0
R36	38	-	0.0	61.5	99	61.5	10	1	61.5	0.0	80	-8.0
R37	39	-	0.0	61.3	99	61.3	10	l	61.3	0.0	80	-8.0
R38	40	-	0.0	61.7	66	61.7	10	1	61.7	0.0	8	-8.0
Park	41	-	0.0	63.4	99	63.4	10	1	63.4	0.0	8	-8.0
R39	42	-	0.0	64.4	99	64.4	10	1	64.4	0.0	œ	-8.0
R40	43	-	0.0	66.1	99	66.1	10	Snd Lvl	66.1	0.0	80	-8.0
MF1	44	-	0.0	63.9	99	63.9	10]	63.9	0.0	80	-8.0
MF2	45	-	0.0	64.0	99	64.0	10	1	64.0	0.0	80	-8.0
MF3	46	-	0.0	64.0	99	64.0	10	1	64.0	0.0	80	-8.0
MF4	47	-	0.0	63.1	66	63.1	10	1	63.1	0.0	80	-8.0
MF5	48	-	0.0	62.6	99	62.6	10	E	62.6	0.0	ø	-8.0
MU1	49	-	0.0	64.6	99	64.6	10	1	64.6	0.0	80	-8.0
Dwelling Units	+	DUS	Noise Red	duction								
			Min	Avg	Max							
			dB	dB	В							
All Selected		47	0.0	0.0	0.0							
All Impacted		18	0.0	0.0	0.0							_
All that meet NR Goal		0	0.0	0.0	0.0			(3				

C:\TNM25\PROGRAM\PORTOLA\1st Floor Unmitigated\1st Floor Unmitigated

INPUI: KUAUWAYS								a Center			
Dudek B. Grover					30 January 24 TNM 2.5	013					
INPUT: ROADWAYS		-					Average	oavement typ	oe shall be	used unles	s
PROJECT/CONTRACT: RUN:	Portola C 1st Floor	enter Mitigated					a State hi of a diffei	ghway ageno ent type with	cy substant the approv	tiates the u val of FHW,	A Se
Roadway		Points									
Name	Width	Name	No.	Coordinates	(pavement)		Flow Con	trol	5 0	Segment	
				×	>	N	Control Device	Speed Constraint	Percent Vehicles Affected	Pvmt Type	On Struct?
	ft			ft	ff	ft		mph	%		
Glenn Ranch Road EB	24.0	point1	F	115.2	1,617.1	940.00			-	Average	
		point2	2	357.9	1,613.1	965.00				Average	
		point3	S	556.8	1,581.3	00.066				Average	
		point4	4	771.6	1,501.7	970.00				Average	
		point5	5	938.7	1,422.1	950.00					
Glenn Ranch Road WB	24.0	point6	9	954.6	1,457.9	950.00				Average	
		point7	7	791.5	1,541.5	970.00				Average	
		point8	8	564.7	1,625.0	00.066				Average	
		point9	9	357.9	1,660.8	965.00				Average	
		point10	10	107.3	1,660.8	940.00					
Glenn Ranch Road EB 2	12.0	point11	11	1,014.3	1,358.5	1,000.00				Average	
		point12	12	1,292.7	1,107.9	1,091.00			-	Average	
		point13	13	1,551.3	817.5	1,048.00				Average	
		point14	14	1,790.0	566.8	1,005.00				Average	
		point15	15	2,112.2	312.2	1,100.00				Average	
		point16	16	2,422.5	173.0	1,100.00				Average	
		point17	17	2,796.4	125.3	1,100.00				Average	
		point18	18	3,190.3	165.1	1,020.00				Average	
		point19	19	3,512.5	200.9	1,080.00				Average	
		point20	20	3,826.8	181.0	1,000.00					
Glenn Ranch Road WB 2	24.0	point21	21	3,826.8	220.8	1,000.00				Average	
		point22	22	3,496.6	240.6	1,080.00				Average	
		point23	23	3,170.4	204.8	1,020.00				Average	
		point24	24	2,796.4	169.0	1,100.00				Average	
		point25	25	2,438.4	212.8	1,100.00				Average	

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

INPUT: ROADWAYS			:			Portola Center	
		point26	26	2,136.1	344.1	1,100.00	Average
		point27	27	1,825.8	590.7	1,005.00	Average
		point28	28	1,587.1	837.4	1,048.00	Average
	15.	point29	29	1,320.6	1,127.8	1,091.00	Average
		point30	30	1,038.1	1,390.3	1,000.00	
Saddleback Ranch Road NB	24.0	point35	35	1,042.1	1,414.2	975.00	Average
		point36	36	1,085.9	1,477.8	945.00	Average
		point37	37	1,304.7	1,788.1	1,000.00	Average
		point38	38	1,439.9	1,979.1	984.00	Average
		point39	39	1,567.2	2,158.1	1,020.00	
Saddleback Ranch Road SB	24.0	point40	40	1,539.4	2,174.0	1,020.00	Average
4		point41	41	1,412.1	1,991.0	984.00	Average
		point42	42	1,280.8	1,804.0	1,000.00	Average
		point43	43	1,062.0	1,501.7	945.00	Average
		point44	44	1,010.3	1,434.1	975.00	

Portola Center

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

INPUT: TRAFFIC FOR LAeg1h Volumes						Å	ortola Cel	nter					Г
Dudek				30 Jan	uary 201	2							
B. Grover				TNM 2.	5.								
INPUT: TRAFFIC FOR LAeq1h Volumes													
PROJECT/CONTRACT: RUN:	Portola Center 1st Floor Mitiga	ated											
Roadway	Points												11
Name	Name	No.	Segmen				3						1
			Autos		MTruck	S	HTrucks	10	Buses		Motorcy	cles	1
	8		>	s	>	S	>	S	>	S	>	S	-
			veh/hr	mph	veh/hr	hdm	veh/hr	hdm	veh/hr	hdm	veh/hr	hdm	
Glenn Ranch Road EB	point1	F	1440	50	30	50	30	20	0		0		110
	point2	2	1440	50	30	50	30	50	0		0		IO
	point3	3	1440	50	ЭС ЭС	50	30	50	0	0	0		10
	point4	4	1440	50	30	20	30	50	0	0	0		10
	point5	5											-
Glenn Ranch Road WB	point6	9	1440	50	30	50	30	50	0		0		10
	point7	2	1440	50	30	50	30	50	0	0	0		0
	point8	80	1440	50	30	50	30	50	0	0	0		0
	point9	6	1440	50	30	50	30	50	0	0	0		0
	point10	10											
Glenn Ranch Road EB 2	point11	11	576	50	12	50	12	50	0	0	0		0
	point12	12	576	50	12	50	12	50	0	0	0		0
	point13	13	576	50	12	50	12	50	0	0	0		
	point14	14	576	50	12	50	12	50	0	0	0		
	point15	15	576	50	12	50	12	50	0	0	0		0
	point16	16	576	50	12	50	12	50	0	0	0		
	point17	17	576	50	12	50	12	50	0	0	0		
	point18	18	576	50	12	50	12	50	0	0	0		
	point19	19	576	50	12	50	12	50	0	0	0		
	point20	20											_
Glenn Ranch Road WB 2	point21	21	576	50	12	50	12	50	0	0	0	0	
	point22	22	576	50	12	50	12	50	0	0	0	0	0
C:\TNM25\PROGRAM\PORTOLA\1st Flool	r Mitigated/1st Fl	oor Mi	itigated							~			

NPUT: TRAFFIC FOR LAeq1h Volumes						Por	tola Cen	ter				
	point23	23	576	50	12	50	12	50	0	0	0	0
	point24	24	576	50	12	50	12	50	0	0	0	0
	point25	25	576	50	12	50	12	50	0	0	0	0
	point26	26	576	50	12	50	12	50	0	0	0	0
	point27	27	576	50	12	50	12	50	0	0	0	0
	point28	28	576	50	12	50	12	50	0	0	0	0
	point29	29	576	50	12	50	12	50	0	0	0	0
	point30	30										
Saddleback Ranch Road NB	point35	35	706	50	15	50	15	50	0	0	0	0
	point36	36	706	50	15	50	15	50	0	0	0	0
	point37	37	706	50	15	50	15	50	0	0	0	0
	point38	38	706	50	15	50	15	50	0	0	0	0
	point39	39										
Saddleback Ranch Road SB	point40	40	706	50	15	50	15	50	0	0	0	0
	point41	41	706	50	15	50	15	50	0	0	0	0
	point42	42	706	50	15	50	15	50	0	0	0	0
	point43	43	706	50	15	50	15	50	0	0	0	0
	point44	44										

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

INPUT: RECEIVERS

Portola Center

Dudek B. Grover

30 Janu

10	
2	
5	
	M 2.5

13	
y 20	
Iuar	2

INFUT: RECEIVERS PROJECT/CONTRACT: 15 Floor Mitjærde Receiver Intert Stating Floor Mitjærde Receiver Antiver All Stating Floor Mitjærde Floor Mitjærd												
	INPUT: RECEIVERS											
RUN: 1st Floor Mitgated Receiver No. #US Coordinates (ground) Height house Criteria Activation Receiver No. #D X Y X Activation Activativation Ac	PROJECT/CONTRACT:	Portol	a Cente) E								
Receiver Name No. #DU Coordinates (ground) Height Faiting Impact Griteria Active R R Faiting Impact Griteria No. P Active	RUN:	1st Flo	or Miti	gated								
Name No. #UDI Contributes (ground) Height Introduct Lenders and Criteria Activation R N Y Z Acound	Receiver											100
	Name	No.	#DUs	Coordinates ((ground)		Height	Input Sou	nd Levels a	and Criteria		Active
R1 R2 R2 R4		<u> </u>		×	×	Z	above	Existing	Impact Cri	iteria	NR	<u>.</u>
R1 \hbar \hbar \hbar \hbar \hbar Φ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ground</th> <th>LAeq1h</th> <th>LAeq1h</th> <th>Sub'l</th> <th>Goal</th> <th>Calc.</th>							Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc.
				ff	Ű	ff	ft	dBA	dBA	dB	dB	
	R1	3	-	83.4	1,983.0	1,058.00	4.92	0.0	99	10.0	8.0	~
	R2	4	-	214.7	1,887.6	1,052.00	4.92	00.0	99	10.0	8.0	≻
R4 $(=)$	R3	5	-	338.0	1,851.8	1,050.00	4.92	0.00	99	10.0	8.0	≻
R5 7 1 787.5 $1.692.6$ $1.045.00$ 4.92 0.00 66 10.0 8.0 Y R6 1 1 $1.058.0$ $1.652.5$ $1.045.00$ 4.92 0.00 66 10.0 8.0 Y R7 1 $1.177.4$ $1.736.4$ $1.055.00$ 4.92 0.00 66 10.0 8.0 Y R9 1 $1.177.4$ $1.736.4$ $1.055.00$ 4.92 0.00 66 10.0 8.0 Y R10 1.3 1 $1.736.4$ $1.075.00$ 4.92 0.00 66 10.0 8.0 Y R11 $1.177.4$ $1.774.10$ 4.92 0.00 66 10.0 8.0 Y R12 $1.166.7$ $1.075.00$ 4.92 0.00 66 10.0 8.0 Y R13 $1.155.13$ $1.776.0$ $1.125.0$ 4.92	R4	9	-	572.7	1,788.1	1,047.50	4.92	0.00	99	10.0	8.0	≻
Re 1 962.6 1,593.2 1,046.00 4.92 0.00 66 10.0 8.0 Y R7 9 1 1,058.0 1,553.0 1,046.00 4.92 0.00 66 10.0 8.0 Y R8 11 1 1,114.16 1,736.4 1,055.00 4.92 0.00 66 10.0 8.0 Y R9 11 1 1 1,17.4 1,736.4 1,055.00 4.92 0.00 66 10.0 8.0 Y R10 13 1 1,292.7 1,927.3 1,055.00 4.92 0.00 66 10.0 8.0 Y R11 13 1 1,404.1 2,110.3 1,074.00 4.92 0.00 66 10.0 8.0 Y R12 1 1,513.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R14 1 1,513.6 1,513.6 1,114.00	R5	7	-	787.5	1,692.6	1,045.00	4,92	0.00	99	10.0	8.0	≻
	R6	8	-	962.6	1,593.2	1,046.00	4.92	0.00	99	10.0	8.0	۲
R8 10 1 1,141.6 1,736.4 1,050.00 4.92 0.00 66 10.0 8.0 Y R9 11 1 1,177.4 1,784.1 1,055.00 4.92 0.00 66 10.0 8.0 Y R10 13 1 1,232.7 1,927.3 1,055.00 4.92 0.00 66 10.0 8.0 Y R11 13 1 1,243.3 2,034.8 1,073.00 4.92 0.00 66 10.0 8.0 Y R12 1 1 1,404.1 2,110.3 1,074.00 4.92 0.00 66 10.0 8.0 Y R12 1 1 1,404.1 2,110.3 1,074.00 4.92 0.00 66 10.0 8.0 Y R13 1 1 1,432.0 1,879.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R16 1 1	R7	6	-	1,058.0	1,652.9	1,046.00	4.92	00.0	99	10.0	8.0	Y
R9 11 1 1,177.4 1,784.1 1,055.00 4.92 0.00 66 10.0 8.0 Y R10 12 1 1,292.7 1,927.3 1,065.00 4.92 0.00 66 10.0 8.0 Y R11 13 1 1,368.3 2,034.8 1,073.00 4.92 0.00 66 10.0 8.0 Y R12 13 1 1,404.1 2,110.3 1,074.00 4.92 0.00 66 10.0 8.0 Y R13 15 1 1,551.3 1,870.6 1,125.00 4.92 0.00 66 10.0 8.0 Y R14 1 1,551.3 1,870.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R15 1 1,551.3 1,513.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R16 1 1,332.5 1,513.6	R8	10	1	1,141.6	1,736.4	1,050.00	4.92	00.0	99	10.0	8.0	Y
R10R1211,292.71,927.31,065.004.920.006610.08.0YR111311,368.32,034.81,073.004.920.006610.08.0YR1214111,404.12,110.31,074.004.920.006610.08.0YR131511,567.31,879.61,175.004.920.006610.08.0YR14111,551.31,879.61,125.004.920.006610.08.0YR15111,551.31,879.61,121.004.920.006610.08.0YR15111,332.51,513.61,114.004.920.006610.08.0YR171911,332.51,513.61,114.004.920.006610.08.0YR171911,332.51,513.61,114.004.920.006610.08.0YR182011,537.41,536.81,107.004.920.006610.08.0YR182011,537.41,536.81,107.004.920.006610.08.0YR182011,536.81,070.04.920.006610.08.0YR182111,537.41,984.01,925.00	R9	11	-	1,177.4	1,784.1	1,055.00	4.92	00.0	99	10.0	8.0	≻
R111311,368.32,034.81,073.004.920.006610.08.0YR121411,404.12,110.31,074.004.920.006610.08.0YR131511,662.72,006.91,150.004.920.006610.08.0YR141611,404.12,110.31,879.61,125.004.920.006610.08.0YR151711,432.01,879.61,121.004.920.006610.08.0YR1617111,332.51,513.61,114.004.920.006610.08.0YR171911,332.51,513.61,114.004.920.006610.08.0YR171911,332.51,513.61,114.004.920.006610.08.0YR182011,022.004.920.006610.08.0YR192111,527.41,083.004.920.006610.08.0YR192111,527.41,083.004.920.006610.08.0YR192111,527.41,083.004.920.006610.08.0YR192111,527.41,083.004.920.006610.08.0 <th< td=""><td>R10</td><td>12</td><td>-</td><td>1,292.7</td><td>1,927.3</td><td>1,065.00</td><td>4.92</td><td>00.0</td><td>66</td><td>10.0</td><td>8.0</td><td>≻</td></th<>	R10	12	-	1,292.7	1,927.3	1,065.00	4.92	00.0	66	10.0	8.0	≻
R12R12 14 1 $1,404.1$ $2,110.3$ $1,074.00$ 4.92 0.00 66 10.0 8.0 Y R13R15 1 $1,662.7$ $2,006.9$ $1,150.00$ 4.92 0.00 66 10.0 8.0 Y R14 16 1 $1,651.3$ $1,879.6$ $1,125.00$ 4.92 0.00 66 10.0 8.0 Y R15 17 1 $1,432.0$ $1,676.7$ $1,125.00$ 4.92 0.00 66 10.0 8.0 Y R16 17 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R17 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R17 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R17 19 $1,132.2$ $1,121.00$ 4.92 0.00 66 10.0 8.0 Y R18 20 $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R18 21 $1,127.00$ 4.92 0.00 66 10.0 8.0 Y R18 22 $1,087.00$ 4.92 0.00 66 10.0 8.0 Y R2 10 $1,22$ $1,087.00$ 4.92 0.00 66 10.0 8.0 Y R2 <td>R11</td> <td>13</td> <td>-</td> <td>1,368.3</td> <td>2,034.8</td> <td>1,073.00</td> <td>4.92</td> <td>00.0</td> <td>99</td> <td>10.0</td> <td>8.0</td> <td>۲</td>	R11	13	-	1,368.3	2,034.8	1,073.00	4.92	00.0	99	10.0	8.0	۲
R13 15 1 $1,662.7$ $2,006.9$ $1,150.00$ 4.92 0.00 66 10.0 8.0 Y R14 16 1 $1,551.3$ $1,879.6$ $1,879.6$ $1,125.00$ 4.92 0.00 66 10.0 8.0 Y R15 17 1 $1,432.0$ $1,676.7$ $1,121.00$ 4.92 0.00 66 10.0 8.0 Y R16 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R17 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R17 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y R18 20 1 $1,332.5$ $1,513.6$ $1,07.00$ 4.92 0.00 66 10.0 8.0 Y R19 20 1 $1,527.4$ $1,084.0$ $1,092.00$ 4.92 0.00 66 10.0 8.0 Y R19 22 1 $1,527.4$ $1,082.00$ 4.92 0.00 66 10.0 8.0 Y R20 22 1 $1,722.4$ 825.4 $1,082.00$ 4.92 0.00 66 10.0 8.0 Y R21 23 1 $1,877.5$ 650.4 $1,082.00$ 4.92 0.00 66 10.0 8.0 Y <td< td=""><td>R12</td><td>14</td><td>-</td><td>1,404.1</td><td>2,110.3</td><td>1,074.00</td><td>4.92</td><td>00.0</td><td>99</td><td>10.0</td><td>8.0</td><td>≻</td></td<>	R12	14	-	1,404.1	2,110.3	1,074.00	4.92	00.0	99	10.0	8.0	≻
R14 16 1 $1,551.3$ $1,879.6$ $1,125.00$ 4.92 0.00 66 10.0 8.0 Y $R15$ 17 1 $1,432.0$ $1,676.7$ $1,121.00$ 4.92 0.00 66 10.0 8.0 Y $R16$ 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y $R17$ 19 1 $1,332.5$ $1,513.6$ $1,114.00$ 4.92 0.00 66 10.0 8.0 Y $R17$ 20 1 $1,380.2$ $1,298.8$ $1,107.00$ 4.92 0.00 66 10.0 8.0 Y $R18$ 20 1 $1,380.2$ $1,298.8$ $1,107.00$ 4.92 0.00 66 10.0 8.0 Y $R18$ 20 1 $1,527.4$ $1,084.0$ $1,092.00$ 4.92 0.00 66 10.0 8.0 Y $R19$ 20 1 $1,527.4$ $1,082.00$ 4.92 0.00 66 10.0 8.0 Y $R20$ 20 1 $1,722.4$ 825.4 $1,082.00$ 4.92 0.00 66 10.0 8.0 Y $R21$ 23 1 $1,287.0$ 4.92 0.00 66 10.0 8.0 Y $R21$ 23 1 $1,085.00$ 4.92 0.00 66 10.0 8.0 Y $R21$ 1 $1,877.5$ 650.4 $1,08$	R13	15	-	1,662.7	2,006.9	1,150.00	4.92	00.0	99	10.0	8.0	≻
R15 11 1 1,432.0 1,676.7 1,121.00 4.92 0.00 66 10.0 8.0 Y R16 18 1 1,332.5 1,513.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R17 19 1 1,332.5 1,513.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R17 19 1 1,332.5 1,513.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R17 1 1,527.4 1,084.0 1,092.00 4.92 0.00 66 10.0 8.0 Y R19 21 1 1,634.8 932.8 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 2 1 1,634.8 932.8 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 2 1 1,722.4 <	R14	16	-	1,551.3	1,879.6	1,125.00	4.92	00.0	99	10.0	8.0	≻
R16 18 1 1,332.5 1,513.6 1,114.00 4.92 0.00 66 10.0 8.0 Y R17 19 1 1,380.2 1,298.8 1,107.00 4.92 0.00 66 10.0 8.0 Y R18 20 1 1,527.4 1,084.0 1,092.00 4.92 0.00 66 10.0 8.0 Y R19 21 1 1,527.4 1,084.0 1,092.00 4.92 0.00 66 10.0 8.0 Y R19 21 1 1,527.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 22 1 1,722.4 825.4 1,082.00 4.92 0.00 66 10.0 8.0 Y R20 23 1 1,877.5 650.4 1,082.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5	R15	17	1	1,432.0	1,676.7	1,121.00	4.92	0.0	99	10.0	8.0	≻
R17 19 1 1,380.2 1,298.8 1,107.00 4.92 0.00 66 10.0 8.0 Y R18 20 1 1,527.4 1,084.0 1,092.00 4.92 0.00 66 10.0 8.0 Y R19 21 1 1,527.4 1,084.0 1,092.00 4.92 0.00 66 10.0 8.0 Y R19 22 1 1,634.8 932.8 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 23 1 1,722.4 825.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R22 23 1 1,08	R16	18	-	1,332.5	1,513.6	1,114.00	4.92	0.00	99	10.0	8.0	≻
R18 20 1 1,527.4 1,084.0 1,092.00 4.92 0.00 66 10.0 8.0 Y R19 21 1 1,634.8 932.8 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 22 1 1,722.4 825.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 23 1 1,722.4 825.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R22 24 1 2,085.0 4.92 0.00 66 10.0 8.0 Y	R17	19	~	1,380.2	1,298.8	1,107.00	4.92	00.0	99	10.0	8.0	≻
R19 21 1 1,634.8 932.8 1,085.00 4.92 0.00 66 10.0 8.0 Y R20 22 1 1,722.4 825.4 1,082.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R22 23 1 2,068.5 475.3 1,087.00 4.92 0.00 66 10.0 8.0 Y	R18	20	1	1,527.4	1,084.0	1,092.00	4.92	00.0	99	10.0	8.0	≻
R20 22 1 1,722.4 825.4 1,082.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R22 24 1 2,068.5 475.3 1,087.00 4.92 0.00 66 10.0 8.0 Y	R19	21	1	1,634.8	932.8	1,085.00	4.92	00.0	99	10.0	8.0	≻
R21 23 1 1,877.5 650.4 1,085.00 4.92 0.00 66 10.0 8.0 Y R22 24 1 2,068.5 475.3 1,087.00 4.92 0.00 66 10.0 8.0 Y	R20	22	1	1,722.4	825.4	1,082.00	4.92	00.0	99	10.0	8.0	≻
R22 24 1 2,068.5 475.3 1,087.00 4.92 0.00 66 10.0 8.0 Y	R21	23	1	1,877.5	650.4	1,085.00	4.92	0.00	66	10.0	8.0	≻
	R22	24	1	2,068.5	475.3	1,087.00	4.92	00.0	99	10.0	8.0	≻

NPUT: RECEIVERS							Por	tola Cente	L		
R23	25		2,275.3	360.0	1,083.00	4.92	0.00	99	10.0	8.0	7
R24	26	-	2,474.2	296.3	1,083.00	4.92	0.00	99	10.0	8.0	≻
R25	27	-	2,716.9	284.4	1,087.00	4.92	0.00	99	10.0	8.0	≻
R26	28	-	2,963.5	312.2	1,091.00	4.92	0.00	99	10.0	8.0	≻
R27	29	-	3,202.2	356.0	1,094.00	4.92	0.00	99	10.0	8.0	≻
R28	30	-	3,417.0	495.2	1,102.00	4.92	0.00	99	10.0	8.0	≻
R29	31	-	3,516.5	682.2	1,105.00	4.92	0.00	99	10.0	8.0	≻
R30	32	-	3,293.7	73.6	1,044.50	4.92	0.00	99	10.0	8.0	≻
R31	33	-	3,162.4	81.5	1,044.00	4.92	0.00	99	10.0	8.0	≻
R32	34	-	3,090.8	85.5	1,043.50	4.92	0.00	99	10.0	8.0	≻
R33	35	-	2,975.5	73.6	1,047.00	4.92	0.00	99	10.0	8.0	≻
R34	36	-	2,804.4	61.6	1,045.00	4.92	0.00	99	10.0	8.0	7
R35	37	-	2,708.9	53.7	1,046.00	4.92	0.00	99	10.0	8.0	≻
R36	38	~	2,625.4	53.7	1,049.00	4.92	0.00	99	10.0	8.0	≻
R37	39	-	2,525.9	65.6	1,050.00	4.92	0.00	99	10.0	8.0	≻
R38	40	-	2,426.5	89.5	1,056.00	4.92	0.00	99	10.0	8.0	≻
Park	41	-	2,199.7	204.8	1,072.00	4.92	0.00	99	10.0	8.0	≻
R39	42	-	2,112.2	236.7	1,070.50	4.92	0.00	99	10.0	8.0	7
R40	43	-	1,984.9	304.3	1,071.00	4.92	0.00	66	10.0	8.0	≻
MF1	44	-	1,809.9	352.0	1,042.00	4.92	00.0	99	10.0	8.0	≻
MF2	45	-	1,714.4	427.6	1,040.00	4.92	0.00	99	10.0	8.0	≻
MF3	46	-	1,511.5	618.6	1,036.00	4.92	0.00	99	10.0	8.0	≻
MF4	47	-	1,400.1	773.7	1,034.00	4.92	0.00	99	10.0	8.0	≻
MF5	48	-	1,221.1	980.6	1,030.00	4.92	0.00	99	10.0	8.0	≻
MU1	49	-	1,133.6	1,127.8	1,028.00	4.92	00.0	99	10.0	8.0	≻

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

NPUT: BARRIERS									Portola (Center									- 3
Dudek B. Grover					30 Janu TNM 2.	а гу 2 013 5	~												
INPUT: BARRIERS PROJECT/CONTRACT: RUN:	Portol. 1st Flc	la Cente oor Mitig	Jated																
Barrier									Points										
Name	Type	Height	L	If Wall	If Berm			Vdd'tnl	Name	No.	Coordinates (bo	ttom)		Height	Segmen	ų			_
		Min	Мах	\$ per	\$ per	Top	Run:Rise	ber			7		Z	at	Seg Ht F	erturb	ő	Important	-
				Unit	Unit	Width		Jnit enoth						Point	Incre-#	0# d);	n Struct	? Reflec-	
		ff.	ŧ	\$/sq ft	\$/cu yd	_ ₽	ft:ft	1/ft			t.		ft	L.		+			
South Slope Along Glenn Ranch Road	N	0.00	6 66 1	9 0.0	0			0.00	point60	60	-0.1	2,070.6	1,058.00	0.00	0.00	0	0		17
9									point61	61	67.5	1,971.1	1,058.00	00.0	00'0	0	0		
									point62	62	190.8	1,855.7	1,052.00	00'0	00.0	0	0		-
									point63	63	334.0	1,816.0	1,050.00	00'0	00.0	0	0		_
									point64	64	556.8	1,756.3	1,047.00	00"0	0.00	0	0		
									point65	65	775.6	1,656.8	1,045.00	0.00	0.00	0	0		_
									point66	66	962.6	1,553.4	1,046.00	00'0	0.00	0	0		
								-	point67	67	1,077.9	1,625.0	1,046.00	00"0	0.00	0	0		
									point68	68	1,157.5	1,708.5	1,050.00	00"0	0.00	0	0		
									point69	69	1,225.1	1,776.2	1,055.00	00.00	0.00	0	0		
									point70	02	1,133.6	1,871.7	1,055.00	00.0		+			
Slope NW of GRR and SRR	>	0.00	99.6	0.0	0			0.00	point71	71	1,197.3	1,919.4	1,065.00	0.00	0.00	0	0		
									point72	72	1,276.8	1,863.7	1,065.00	00.00	0.00	0	0		
									point73	73	1,312.6	1,923.4	1,065.00	00"0	0.00	0	0		- ,
									point74	74	1,392.2	2,022.8	1,073.00	0.00	0.00	0	0		
									point75	75	1,447,9	2,098.4	1,074.00	0.00	0.00	0	0		_
									point76	76	1,356.4	2,170.0	1.074.00	00.0		_			
Slope NE of GRR and SRR	×	0.00	99.9	0.0	0			0.00	point77	77	1,722.4	2,102.4	1,150.00	00.00	0.00	0	0		-
									point78	78	1,626,9	2,014.9	1,150.00	6.00	0.00	0	0		_
									point79	62	1,519.5	1,919.4	1,125.00	6.00	0.00	0	0		
									point80	80	1,392.2	1,692.6	1,121.00	6.00	0.00	0	0		
									point81	81	1,296.7	1,513.6	1,114.00	6.00	0,00	0	0		
									point82	82	1,344.4	1,282.9	1,107.00	6.00	0.00	0	0		
									point83	8	1,495.6	1,060.1	1,092.00	6.00	000	-	5		
									point84	84	1,607.0	0.606	1.085.00	6.00	0.00	0	0		
									point85	85	1,694.5	801.5	1,082.00	6.00	0.00	0	0		-
									point86	86	1,869,6	618.6	1,085.00	6.00	0.00	0	0		
									point87	87	2,056.5	451.5	1,087.00	6.00	0.00	0	0		
									point88	88	2,287.2	316.2	1,083.00	6.00	0.00	0	0		
									point89	89	2,346.9	407.7	1,083.00	6.00					
Slope N GRR	N	0.00	6 66 0	0.0	0			0.00	point90	90	2,442.4	395.8	1,083.00	00.0	0.00	0	0		
									point91	91	2,454.3	256.6	1,083.00	6.00	0.00	0	0		
									point92	92	2,701.0	256.6	1,087.00	6.00	0.00	0	0		
									point93	93	2,975.5	276.4	1,091.00	6.00	00-00	0	0		
									point94	94	3,206.2	324.2	1,094.00	00.0	00*0	0	0		_
C:\TNM25\PROGRAM\PORTOLA\1st Fic	oor Miti	igated/1	st Floo	r Mitigat	pa					-					30 Ja	nuary 2	013		

INPUT: BARRIERS						Portola (Center								
			-			point95	95	3,432.9	471.4	,102.00	0.00	0.00	0	0	
						point96	96	3,548.3	686.2	1,105.00	0.00	0.00	0	0	
						point97	67	3,488.6	761.8	1,105.00	0.00		╞		
Slope S GRR	M	0.00	66,66	0.00	0.00	point98	98	3,337.5	29.8	,044.50	6.00	0.00	0	0	
						point99	66	3,333.5	113.3	,044.50	6.00	0.00	0	0	
						point100	100	3,162.4	105.4	,044.00	6.00	0.00	0	0	
						point101	101	3,090.8	109.4	,043.50	6.00	0.00	0	0	
			\vdash			point102	102	2,971.5	109.4	1,047.00	0.00	0.00	0	0	
						point103	103	2,800.4	89.5	,045.00	0.00	0.00	0	0	
						point104	104	2,701.0	85.5	046.00	00.0	0.00	0	0	
						point105	105	2,621.4	85.5	049.00	0.00	0.00	0	0	
						point106	106	2,529.9	101.4	020.00	0.00	0.00	0	0	
						point107	107	2,422.5	129.3	00.950,1	0.00	0.00	0	0	
						point108	108	2,323.1	21.8	,056.00	0.00		_		
Slope SE GRR and SRR	N	00.0	99.99	0.00	0.00	point109	109	2,203.7	89.5	,072.00	0.00	0.00	0	0	
						point110	110	2,235.5	216.8	,072.00	0.00	0.00	0	0	
					_	point111	111	2,116.2	268.5	,070.50	6.00	0.00	0	0	
						point112	112	1,988.9	344.1	,071.00	6.00	0.00	0	0	
						point113	113	1,873.5	371.9	,042.00	0.00	0.00	0	0	
						point114	114	1,782.0	455.5	,040.00	0.00	0.00	0	0	
			-			point115	115	1,583.1	650.4	036.00	0.00	0.00	0	0	
						point116	116	1,471.7	797.6	,034.00	0.00	0.00	0	0	
					-	point117	117	1,292.7	1,016.4	,030.00	0.00	0.00	0	0	
						point118	118	1,173.4	1,159.6	,028,00	0.00	0.00	0	0	
						point119	119	1,006.3	1,334.6	,028.00	0.00	0.00	0	0	
						point120	120	950.6	1,247.1	1,028.00	0.00		_		

30 January 2013

2

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

RESULTS: SOUND LEVELS							Portola C	enter				
Dudek							30 Januar	y 2013				
B. Grover							TNM 2.5					
							Calculate	d with TNN	2.5			
RESULTS: SOUND LEVELS PROJECT/CONTRACT:		Portol	a Center									
RUN:		1st Flo	or Mitigate	pe								
BARRIER DESIGN:		INPUI	L HEIGHTS					Average p	avement type	shall be use	d unless	
ATMOSPHERICS:		68 de	g F, 50% R	Т				a State hi of a differ	phway agency ent type with	/ substantiate approval of F	es the use HWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrie					With Barrier			
			LAeq1h	LAeq1h		Increase over	er existing	Type	Calculated	Noise Reduc	tion	
				Calculate	d Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus
				× 07		-	ę			ę	ę	Goal
			Yan	Adb	Yan	a	9			e l	9	9
R1	m		0.	2		51 51			51.1	0.0		-8.0
R2	4		0	22	3.2	53 53	.2	I	53.2	0.0		-8.0
R3	2		Ö	ů o	4.4	36 54	.4	l	54.4	0.0		-8.0
R4	9		0.	2	5.7	36 55	.7 10	1	55.7	0.0		-8.0
R5	7		1 0.	0	5.5	36 55	.5 10	1	55.5	0.0	Ű	-8.0
R6	8		1 0.	0	3.1 6	36 58	.1	1	58.1	0'0		-8.0
R7	0		1 0.	0	7.0 6	36 57	.0 10	1	57.0	0.0	w	-8.0
R8	10		1	0 5	3.6 (36 56	.6 10	1	56.6	0.0	Ű	-8.0
R9	11		1	0 5	3.7 6	36 56	.7 10		56.7	0.0	w	-8.0
R10	12		1	0	5.9 6	36 55	.9 10		55.9	0.0	Ű	-8.0
R11	13		1	0	4.1 E	36 54	.1 10		54.1	0.0	~	-8.0
R12	14		1	0	2.9 6	36 52	.9 10	Ĭ	52.9	0.0	~	-8.0
R13	15		1 0.	0	9.1 6	36 49	.1		49.1	0.0		-8.0
R14	16		1 0.	0	9.1 6	36 49	.1	1	49.1	0.0		-8.0
R15	17		1	0	J.5 6	36 50	.5 10		50.5	0.0		-8.0
R16	18		0.	0	2.6 6	36 52	.6 10	-	52.6	0.0	w	-8.0
R17	19		1	0	4.4 6	36 54	.4 10		54.4	0.0	w	-8.0
R18	20		1 0.	0	5.1 6	36 55	.1		55.1	0.0	Ű	-8.0
R19	21		1 0.	0 5	5.1 6	36 55	.1	I	55.1	0.0	w	-8.0
R20	22		1 0.	0 5	5.4 6	36 55	.4 10	Ĩ	55.4	0.0		-8.0
R21	23		1 0.	0	7.5 6	36 57	.5 10	1	57.5	0.0		-8.0
R22	24		1	0	1.4	56 61	.4 10	I	61.4	0.0		-8.0
R23	25		0	0	3.1 6	56 63	.1	1	63.1	0.0		-8.0

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

ĕ

-

RESULTS: SOUND LEVELS						P	ortola Cei	nter				
R24	26	L	0.0	62.9	99	62.9	10	I	62.9	0.0	8	-8.0
R25	27	-	0.0	63.3	99	63.3	10	ķ	63.3	0.0	80	-8.0
R26	28	-	0.0	60.1	99	60.1	10	ſ	60.1	0.0	8	-8.0
R27	29	-	0.0	60.1	66	60.1	10	1	60.1	0.0	80	-8.0
R28	30	-	0.0	60.1	66	60.1	10	1	60.1	0.0	80	-8.0
R29	31	-	0.0	56.2	66	56.2	10	1	56.2	0.0	80	-8.0
R30	32	-	0.0	60.3	66	60.3	10	Į	60.3	0.0	80	-8.0
R31	33	-	0.0	60.2	99	60.2	10	1	60.2	0.0	80	-8.0
R32	34	-	0.0	62.5	99	62.5	10	J	62.5	0.0	8	-8.0
R33	35	-	0.0	63.5	66	63.5	10	1	63.5	0.0	80	-8.0
R34	36	-	0.0	60.5	99	60.5	10	Ţ	60.5	0.0	8	-8.0
R35	37	-	0.0	60.1	99	60.1	10	l,	60.1	0.0	80	-8.0
R36	38	-	0.0	60.1	66	60.1	10	ţ	60.1	0.0	8	-8.0
R37	39	-	0.0	60.1	99	60.1	10	į	60.1	0.0	80	-8.0
R38	40	-	0.0	60.8	99	60.8	10	1	60.8	0.0	80	-8.0
Park	41	-	0.0	62.4	99	62.4	10	1	62.4	0.0	80	-8.0
R39	42	-	0.0	62.9	99	62.9	10)	62.9	0.0	80	-8.0
R40	43	-	0.0	62.9	99	62.9	10	1	62.9	0.0	80	-8.0
MF1	44	-	0.0	62.4	99	62.4	10	I	62.4	0.0	80	-8.0
MF2	45	-	0.0	61.3	99	61.3	10	1	61.3	0.0	8	-8.0
MF3	46	-	0.0	62.3	99	62.3	10	ţ	62.3	0.0	80	-8.0
MF4	47	-	0.0	61.8	99	61.8	10	Ę	61.8	0.0	80	-8.0
MF5	48	-	0.0	60.9	99	60.9	10		60.9	0.0	8	-8.0
MU1	49	+	0.0	62.5	99	62.5	10	I	62.5	0.0	80	-8.0
Dwelling Units	Q #	Us Nois	e Reduct	on								
		Min	Avg	-	Max							
			đB		đB							
All Selected		47	0.0	0.0	0.0							
All Impacted		0	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0							

C:\TNM25\PROGRAM\PORTOLA\1st Floor Mitigated\1st Floor Mitigated

Dudek											
B. Grover				~ -	0 January 2 NM 2.5	013					
INPUT: ROADWAYS PROJECT/CONTRACT: P	Portola C	enter					Average a State hi	pavement typ ighway agenc	e shall be i y substant	used unless iates the us	(0 ⁽¹⁾
KUN:	Znd F1001	numitigat	0					rent type with	the approv	/al of FHW/	
Roadway		Points	Ì								
Name	Width	Name	No.	cordinates (pavement)		Flow Cor	ntrol		Segment	
			<u> </u>			N	Control Device	Speed Constraint	Percent Vehicles Affected	Pvmt Type	On Struct?
TT	ft		<u>_</u>	¶		ft		mph	%		
Glenn Ranch Road EB	24.0	point1	-	115.2	1,617.1	940.00				Average	
		point2	2	357.9	1,613.1	965.00				Average	
		point3	e	556.8	1,581.3	990.06				Average	
		point4	4	771.6	1,501.7	970.00	0			Average	
		point5	5	938.7	1,422.1	950.00	0				
Glenn Ranch Road WB	24.0	point6	9	954.6	1,457.9	950.0(0			Average	
		point7	7	791.5	1,541.5	970.00	0			Average	
		point8	80	564.7	1,625.0	990.06	0			Average	
		point9	တ	357.9	1,660.8	965.00	0			Average	
		point10	10	107.3	1,660.8	940.00	0				
Glenn Ranch Road EB 2	12.0	point11	11	1,014.3	1,358.5	1,000.0(Average	
		point12	12	1,292.7	1,107.9	1,091.00				Average	
		point13	13	1,551.3	817.5	1,048.0(Average	
		point14	14	1,790.0	566.8	1,005.0(Average	
		point15	15	2,112.2	312.2	1,100.0(0			Average	
		point16	16	2,422.5	173.0	1,100.00	_			Average	
		point17	17	2,796.4	125.3	1,100.0(0			Average	
		point18	18	3,190.3	165.1	1,020.0(Average	
		point19	19	3,512.5	200.9	1,080.00	0			Average	
		point20	20	3,826.8	181.0	1,000.00	0				
Glenn Ranch Road WB 2	24.0	point21	21	3,826.8	220.8	1,000.00	0			Average	
		point22	22	3,496.6	240.6	1,080.0(0			Average	
		point23	23	3,170.4	204.8	1,020.00	0			Average	
		point24	24	2,796.4	169.0	1,100.00				Average	
		point25	25	2,438.4	212.8	1,100.00				Average	

30 J

-

INPUT: ROADWAYS	-					Portola Center		
		point26	26	2,136.1	344.1	1,100.00	Average	
		point27	27	1,825.8	590.7	1,005.00	Average	
		point28	28	1,587.1	837.4	1,048.00	Average	
		point29	29	1,320.6	1,127.8	1,091.00	Average	
		point30	30	1,038.1	1,390.3	1,000.00		
Saddleback Ranch Road NB	24.0	point35	35	1,042.1	1,414.2	975.00	Average	
		point36	36	1,085.9	1,477.8	945.00	Average	
		point37	37	1,304.7	1,788.1	1,000.00	Average	
	-	point38	38	1,439.9	1,979.1	984.00	Average	
		point39	39	1,567.2	2,158.1	1,020.00		
Saddleback Ranch Road SB	24.0	point40	40	1,539.4	2,174.0	1,020.00	Average	
		point41	41	1,412.1	1,991.0	984.00	Average	
		point42	42	1,280.8	1,804.0	1,000.00	Average	
		point43	43	1,062.0	1,501.7	945.00	Average	
		point44	44	1,010.3	1,434.1	975.00		
							10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	

C:\TNM25\PROGRAM\PORTOLA\2nd Floor Unmitigated

30 J

INPUT: TRAFFIC FOR LAeq1h Volumes						Å	ortola Cer	nter				
Dudek				30 Jan	uary 201	<u></u>	v.					
B. Grover				TNM 2.	5.							
INPUT: TRAFFIC FOR LAeq1h Volumes												
PROJECT/CONTRACT:	Portola Center											
RUN:	2nd Floor Unm	itigate	g									
Roadway	Points											
Name	Name	No.	Segment									
			Autos		MTruck	s	HTrucks		Buses		Motorcy	cles
			>	s	>	s	>	S	>	S	>	S
			veh/hr	hdm	veh/hr	hdm	veh/hr	mph	veh/hr	hdm	veh/hr	hdm
Glenn Ranch Road EB	point1	-	1440	50	30	50	30	50	0	0	0	0
	point2	2	1440	50	30	50	30	50	0	0	0	0
	point3	e	1440	50	30	50	30	50	0	0	0	0
	point4	4	1440	50	30	50	30	50	0	0	0	0
	point5	5										
Glenn Ranch Road WB	point6	9	1440	50	90	50	30	50	0	0	0	0
	point7	7	1440	50	30	50	30	50	0	0	0	0
	point8	8	1440	50	30	50	30	50	0	0	0	0
	point9	6	1440	50	30	50	30	50	0	0	0	0
	point10	10										
Glenn Ranch Road EB 2	point11	11	576	50	12	50	12	50	0	0	0	0
	point12	12	576	50	12	50	12	50	0	0	0	0
	point13	13	576	50	12	50	12	50	0	0	0	0
	point14	14	576	50	12	50	12	50	0	0	0	0
	point15	15	576	50	12	50	12	50	0	0	0	0
	point16	16	576	50	12	50	12	50	0	0	0	0
	point17	17	576	50	12	50	12	50	0	0	0	0
	point18	18	576	50	12	50	12	50	0	0	0	0
	point19	19	576	50	12	50	12	50	0	0	0	0
	point20	20										
Glenn Ranch Road WB 2	point21	21	576	50	12	50	12	50	0	0	0	0
	point22	22	576	50	12	50	12	50	0	0	0	0
C:\TNM25\PROGRAM\PORTOLA\2nd Floo	or Unmitigated								~			

NPUT: TRAFFIC FOR LAeq1h Volumes						Port	ola Cent	er				
	point23	23	576	50	12	50	12	50	0	0	0	0
	point24	24	576	50	12	50	12	50	0	0	0	0
	point25	25	576	50	12	50	12	50	0	0	0	0
	point26	26	576	50	12	50	12	50	0	0	0	0
	point27	27	576	50	12	50	12	50	0	0	0	0
	point28	28	576	50	12	50	12	50	0	0	0	0
	point29	29	576	50	12	50	12	50	0	0	0	0
	point30	30						1 1				
Saddleback Ranch Road NB	point35	35	706	50	15	50	15	50	0	0	0	0
	point36	36	706	50	15	50	15	50	0	0	0	0
	point37	37	706	50	15	50	15	50	0	0	0	0
	point38	38	706	50	15	50	15	50	0	0	0	0
	point39	39										
Saddleback Ranch Road SB	point40	40	706	50	15	50	15	50	0	0	0	0
	point41	41	706	50	15	50	15	50	0	0	0	0
	point42	42	706	50	15	50	15	50	0	0	0	0
	point43	43	706	50	15	50	15	50	0	0	0	0
	point44	44		-								

INPUT: RECEIVERS									ortola Cen	ter			
Dudek							30 Januar	y 2013					
B. Grover							TNM 2.5						
INPUT: RECEIVERS													
PROJECT/CONTRACT:	Porto	la Cen	ter										
RUN:	2nd F	loor U	nmitig	ated									
Receiver													
Name	No.	\$ng#	Coo	rdinates (ground)	6 1 6	Height	Input Sour	nd Levels a	nd Criteria	a	Acti	ive.
			×			N	above	Existing	Impact Crit	teria	R	<u>.</u>	11
							Ground	LAeq1h	LAeq1h	Sub'l	Goal	Calc	പ
			æ	<u>+</u>	t	ft	ft	dBA	dBA	dB	đB	<u> </u>	
R1			-	83.4	1,983.	0 1,058.00	15.00	00.0	99	10.0	8	۲ ر	
R2			-	214.7	1,887.	6 1,052.00	15.00	00.0	99	10.0	8	۲ 0	
R3	47	10	-	338.0	1,851.	1,050.00	15.00	00.0	99	10.0	8	۲ 0	
R4		6	-	572.7	1,788.	1 1,047.50	15.00	00.0	99	10.0	8	۲. ۲	
R5			-	787.5	1,692.	6 1,045.00	15.00	00.0	66	10.0	8	۲ ١	
R6		0	-	962.6	1,593.	2 1,046.00	15.00	00.0	66	10.0	8	≻ 0	
R7	0,	0	-	1,058.0	1,652.	9 1,046.00	15.00	00.00	99	10.0	8	۲ 0	
R8	Ţ		-	1,141.6	1,736.	4 1,050.00	15.00	00.0	99	10.0	8	۲ 0	
R9	÷		-	1,177.4	1,784.	1 1,055.00	15.00	00.0	99	10.0	8	۲ 0	
R10	1		-	1,292.7	1,927.	3 1,065.00	15.00	00.00	66	10.0	8	> 0	
R11	÷	0	-	1,368.3	2,034.	8 1,073.00	15.00	00.00	99	10.0	8	۲ 0	
R12	4	-	-	1,404.1	2,110.	3 1,074.00	15.00	00.0	66	10.0	8	> 0	
R13	Ŧ	10	-	1,662.7	2,006.	9 1,150.00	15.00	00.0	99	10.0	8	> 0	
R14	1	0	-	1,551.3	1,879.	6 1,125.00	15.00	0.00	99	10.0	8	> 0	
R15	-		-	1,432.0	1,676.	7 1,121.00	15.00	00.0	66	10.0	8	۲ 0	
R16	7		-	1,332.5	1,513.	6 1,114.00	15.00	00.00	99	10.0	8	۲ 0	
R17	-1	6	-	1,380.2	1,298.	1,107.00	15.00	00.00	99	10.0	8	> 0	
R18	5(-	1,527.4	1,084.	0 1,092.00	15.00	00.0	99	10.0	8	> 0	
R19	5	_	-	1,634.8	932.	8 1,085.00	15.00	00.00	99	10.0	8	>	
R20	2	0	-	1,722.4	825.	4 1,082.00	15.00	00.0	99	10.0	8	≻ 0	
R21	3	~	-	1,877.5	650.	4 1,085.00	15.00	00.0	99	10.0	80	> 0	
R22	2	+	-	2,068.5	475.	3 1,087.00	15.00	00.0	99	10.0	8	≻ 0	

~

NPUT: RECEIVERS							Poi	rtola Cente	L		
R23	25	L	2,275.3	360.0	1,083.00	15.00	0.00	99	10.0	8.0	≻
R24	26	-	2,474.2	296.3	1,083.00	15.00	0.00	99	10.0	8.0	≻
R25	27	-	2,716.9	284.4	1,087.00	15.00	0.00	99	10.0	8.0	≻
R26	28	-	2,963.5	312.2	1,091.00	15.00	0.00	99	10.0	8.0	≻
R27	29	-	3,202.2	356.0	1,094.00	15.00	0.00	66	10.0	8.0	≻
R28	30	-	3,417.0	495.2	1,102.00	15.00	0.00	99	10.0	8.0	≻
R29	31	-	3,516.5	682.2	1,105.00	15.00	0.00	99	10.0	8.0	۲
R30	32	-	3,293.7	73.6	1,044.50	15.00	0.00	99	10.0	8.0	≻
R31	33	-	3,162.4	81.5	1,044.00	15.00	0.00	99	10.0	8.0	۲
R32	34	-	3,090.8	85.5	1,043.50	15.00	0.00	66	10.0	8.0	≻
R33	35	-	2,975.5	73.6	1,047.00	15.00	0.00	99	10.0	8.0	≻
R34	36	-	2,804.4	61.6	1,045.00	15.00	0.00	99	10.0	8.0	≻
R35	37	-	2,708.9	53.7	1,046.00	15.00	0.00	99	10.0	8.0	≻
R36	38	-	2,625.4	53.7	1,049.00	15.00	0.00	66	10.0	8.0	≻
R37	39	-	2,525.9	65.6	1,050.00	15.00	0.00	66	10.0	8.0	≻
R38	40	-	2,426.5	89.5	1,056.00	15.00	0.00	99	10.0	8.0	≻
Park	41	-	2,199.7	204.8	1,072.00	15.00	0.00	99	10.0	8.0	≻
R39	42	-	2,112.2	236.7	1,070.50	15.00	0.00	66	10.0	8.0	≻
R40	43	-	1,984.9	304.3	1,071.00	15.00	0.00	99	10.0	8.0	≻
MF1	44	-	1,809.9	352.0	1,042.00	15.00	0.00	99	10.0	8.0	≻
MF2	45	-	1,714.4	427.6	1,040.00	15.00	0.00	99	10.0	8.0	≻
MF3	46	F	1,511.5	618.6	1,036.00	15.00	0.00	66	10.0	8.0	≻
MF4	47	-	1,400.1	773.7	1,034.00	15.00	0.00	66	10.0	8.0	≻
MF5	48	-	1,221.1	980.6	1,030.00	15.00	00.0	66	10.0	8.0	≻
MU1	49	-	1,133.6	1,127.8	1,028.00	15.00	0.00	99	10.0	8.0	≻

									Ропоіа	Center								
Dudek					30 Jar	uary 201	5											
B. Grover					TNM	ņ												
INPUT: BARRIERS			,				_		,									
RUN:	2nd Fl	a cente oor Uni	er mitigat	pa	8		_											
Barrier					2 1	2013			Points									
Иате	Type	Height		If Wa	II If Beri	5		Add'tnl	Name	ġ	Coordinates (I	bottom)		Height	Segmer	Ŧ		
		Min	Мах	\$ per	\$ per	Top	Run:Rise	\$ per			×	~	Z	at	Seg Ht I	Perturbs	ő	Important
				Unit	Cuit	Width		Unit						Point	Incre-#		n Struct	Reflec-
		4	4	Area	. voi	4	4.4	Length		1			4	a	ment	+	_	fions ?
		ŧ	±	\$/sd	t \$/cn A	±	11:11	11/\$				-	=	=	ŧ	-		
South Slope Along Glenn Ranch Road	8	0.0	66 0	0 66	00			0.00	point60	60	-0.1	2,070.6	1,058,00	0.00	0.00	0	0	
				-	_		±1		point61	61	67.5	1,971.1	1,058.00	00.00	0.00	0	0	
			_						point62	62	190.8	1,855.7	1,052.00	0.00	0.00	0	0	
									point63	63	334.0	1,816.0	1,050.00	0.00	0.00	0	0	
									point64	64	556,8	1,756.3	1,047.00	00.0	0.00	0	0	
				_					point65	65	775.6	1,656.8	1,045.00	0.00	0.00	0	0	
									point66	66	962.6	1,553.4	1,046.00	0.00	0.00	0	0	
									point67	67	1,077.9	1,625.0	1,046.00	0.00	0.00	0	0	
				_	_				point68	68	1,157.5	1,708.5	1,050.00	0.00	0,00	0	0	
									point69	69	1,225.1	1,776.2	1,055.00	0.00	0.00	0	0	
									point70	20	1,133.6	1,871.7	1,055.00	0.00				
Slope NW of GRR and SRR	M	0.0	0 99.	.0 66	00			00.00	point71	71	1,197.3	1,919.4	1,065.00	0.00	0,00	0	0	
									point72	72	1,276,8	1,863.7	1,065.00	00.0	0.00	0	0	
				_					point73	73	1,312.6	1,923.4	1,065.00	0.00	00.0	0	0	
				_					point74	74	1,392.2	2,022.8	1,073.00	0.00	0.00	0	0	
									point75	75	1,447.9	2,098.4	1,074.00	0.00	0.00	Q	0	
				_					point76	76	1,356.4	2,170.0	1,074.00	00.0				
Slope NE of GRR and SRR	N	0.0	.66 C	.0 66	00			00.0	point77	77	1.722.4	2,102.4	1,150.00	0.00	0.00	0	0	
									point78	78	1,626.9	2,014.9	1,150.00	6.00	0,00	0	0	
				_					point79	62	1,519.5	1,919.4	1,125.00	6.00	0.00	0	0	
									point80	80	1,392.2	1,692.6	1,121.00	6.00	0.00	0	0	
									point81	81	1,296.7	1,513.6	1,114.00	6.00	0.00	0	0	
				-					point82	82	1,344.4	1,282.9	1,107.00	6.00	0,00	0	0	
									point83	83	1,495.6	1,060.1	1,092.00	6.00	0.00	0	0	
									point84	84	1,607.0	909.0	1,085.00	6.00	00.0	0	0	
									point85	85	1,694.5	801.5	1,082.00	6,00	0.00	0	0	
									point86	86	1,869.6	618.6	1,085.00	6.00	0.00	0	0	
									point87	87	2,056.5	451.5	1,087.00	6.00	0.00	0	0	
									point88	88	2,287.2	316.2	1,083.00	6.00	0.00	0	0	
									point89	89	2,346.9	407.7	1,083.00	6.00				
Slope N GRR	M	0.0(.66 0	.0 66	00			0.00	point90	6	2,442.4	395.8	1,083.00	0.00	0.00	0	0	
									point91	91	2,454.3	256.6	1,083.00	6.00	0.00	0	0	
									point92	92	2,701.0	256.6	1,087.00	6.00	0.00	0	0	
									point93	93	2,975.5	276.4	1,091.00	6.00	0.00	0	0	
									point94	94	3,206.2	324.2	1,094.00	0.00	0.00	0	0	
C:\TNM25\PROGRAM\PORTOLA\2nd Fk	oor Uni	mitigat	pa						-					30 Janu	ary 2013	~		

INPUT: BARRIERS						Portola	Center								
						point95	95	3,432.9	471.4 1,10	2.00	0.00 0.0	00.	0	0	
						point96	96	3,548.3	686.2 1,10	5.00	0.00	00	0	0	
						point97	97	3,488.6	761.8 1,10	5.00	0.00		_		
Slope S GRR	×	0.00	99.99	0.00	00"0	point98	98	3,337.5	29.8 1,04	4.50	6.00 0.9	00	0	0	
						point99	66	3,333.5	113.3 1,04	4.50	6.00 0.9	0.	0	0	
						point100	100	3,162.4	105.4 1,04	4.00	6.00 0.3	00	0	0	
						point101	101	3,090.8	109.4 1,04	3.50	6.00 0.9	00	0	0	
						point102	102	2,971.5	109.4 1,04	7.00	0.00 0.0	00.	0	0	
						point103	103	2,800.4	89.5 1,04	5.00	0.00 0.0	00	0	0	
						point104	104	2,701.0	85.5 1,04	6.00	0.00 0.0	00.	0	0	
						point105	105	2,621.4	85.5 1,04	9.00	0.00	00	0	0	
						point106	106	2,529.9	101.4 1,05	0.00	0.00 0.0	00	0	0	
						point107	107	2,422.5	129.3 1,05	6.00	0.00 0.0	00.	0	0	
						point108	108	2,323.1	21.8 1,05	6.00	0.00		_	_	
Slope SE GRR and SRR	N	0.00	<u>99.99</u>	0.00	00.0	point109	109	2,203.7	89.5 1,07	2.00	0.00 0.0	00	0	0	
						point110	110	2,235.5	216.8 1,07	2.00	0.00 0.0	00.	0	0	
						point111	111	2,116.2	268.5 1,07	0.50	6.00 0.	00	0	0	
						point112	112	1,988.9	344.1 1,07	1.00	6.00 0.	00	0	0	
						point113	113	1,873.5	371.9 1,04	2.00	0.00 0.0	00	0	0	
						point114	114	1,782.0	455.5 1,04	0.00	0.00 0.0	00	0	0	
						point115	115	1,583.1	650.4 1,03	6.00	0.00 0.0	00.	0	0	
						point116	116	1,471.7	797.6 1,03	4.00	0,00 0.	00.	0	0	
						point117	117	1,292.7	1,016.4 1,03	0.00	0.00 0.0	00.	0	0	
						point118	118	1,173.4	1,159.6 1,02	8.00	0.00 0.0	00	0	0	
						point119	119	1,006.3	1,334.6 1,02	8.00	0.00 0.0	00	0	0	
						point120	120	950.6	1,247.1 1,02	8.00	0.00	-	_	_	
														č	

Portola Center

30 January 2013

2

C:\TNM25\PROGRAM\PORTOLA\2nd Floor Unmitigated

Dudek B. Grover RESULTS: SOUND LEVELS PROJECT/CONTRACT: Panie Panie No. #DUS Facility No. #DUS Facility No. #DUS Facility Panie R1 R2 R3 R4 R4 <th>center r Unmitigated IEIGHTS : 50% RH :xisting No Barrier :xisting No Barrier Calculated BA dBA 57.7 0.0 60.0 0.0 62.5</th> <th>dBA dB dB</th> <th>30 TN Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca</th> <th>l January 2 MM 2.5 alculated w a a a a a firth a 1 b 1 lnc b 1 b 1 lnc b 1</th> <th>2013 vith TNM State hig Ppe</th> <th>12:5 avement typ bhway agenc ent type with With Barrier Calculated dBA 60.0</th> <th>e shall be used unl sy substantiates the approval of FHWA approval of FHWA Calculated Goal</th> <th>ess e use minus Goal</th> <th>≥ 00 ≥ 00</th>	center r Unmitigated IEIGHTS : 50% RH :xisting No Barrier :xisting No Barrier Calculated BA dBA 57.7 0.0 60.0 0.0 62.5	dBA dB dB	30 TN Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	l January 2 MM 2.5 alculated w a a a a a firth a 1 b 1 lnc b 1 b 1 lnc b 1	2013 vith TNM State hig Ppe	12:5 avement typ bhway agenc ent type with With Barrier Calculated dBA 60.0	e shall be used unl sy substantiates the approval of FHWA approval of FHWA Calculated Goal	ess e use minus Goal	≥ 00 ≥ 00
B. Grover RESULTS: SOUND LEVELS PROJECT/CONTRACT: Portola Center RUN: 2nd Floor Unmitigated INPUT HEIGHTS ATMOSPHERICS: 68 deg F, 50% RH ATMOSPHERICS: 68 deg F, 50% RH Receiver Name No. #DUS Existing No Barrier Name ATMOSPHERICS: 68 deg 7, 50% RH Calculated ABA Receiver No. 40 ABA Receiver No. 40 ABA Receiver No. 40 ABA Receiver No. 40 ABA Ratio ABA RATI	center r Unmitigated EIGHTS EIGHTS S0% RH Aeq1h Calculated BA dBA 0.0 60.0 0.0 62.5	dBA dB 66 dB 66 dB 70 dB	Culated Cr Culated Cr Culated Cr	A A A A A A A A A A A A A A A A A A A	vith TNM verage p verage p verage p verage p	12.5 lavement typ alvement typ alvey agenc ent type with ent type with Calculated LAeq1h LAeq1h 60.0	e shall be used unley substantiates the approval of FHWA Noise Reduction Calculated Goal dB	ess e use minus Goal	× −00
D. Grover Results: Sound LeveLs Portola Center PROJECT/CONTRACT: 2nd Floor Unmitigated RUN: INPUT HEIGHTS BARRIER DESIGN: INPUT HEIGHTS ATMOSPHERICS: 68 deg F, 50% RH Receiver No. #DUs Name No. #DUs Receiver No. #DUs Rad 1 0.0 Rad 5 1	center r Unmitigated EIGHTS ; 50% RH calculated BA dBA BA dBA 0.0 60.0 0.0 62.2 0.0 62.5	dBA dB 66 dB dB	Case over exited and cutated cr	alculated w A A a a a a a a a a a a a a a a a a a	vith TNM State hig State hig r a differ	12:5 avement typ avement typ avement typ ent type with with Barrier Calculated LAeq1h dBA 60.0	e shall be used unley substantiates the approval of FHWA Noise Reduction dB dB	ess suse minus Goal	≥ -00 ≥ -00
RESULTS: SOUND LEVELS Portola Center PROJECT/CONTRACT: 2nd Floor Unmitigated RUN: INPUT HEIGHTS ATMOSPHERICS: 68 deg F, 50% RH ATMOSPHERICS: 68 deg F, 50% RH Name No. #DUs Receiver No. #DUs Name No. #DUs Ratier No. #DUs Receiver No. 60.0 R1 5 1 0.0 R2 5 1 0.0 60	center r Unmitigated EIGHTS 50% RH Aeq1h Calculated BA dBA 0.0 60.0 0.0 62.5 0.0 62.5	dBA dB	rease over exi culated Cr dB	A it'n a a b'l Inc it'n	verage p State hig Ta differ	wavement typ ghway agenc ent type with With Barrier Calculated LAeq1h dBA 60.0	e shall be used unl sy substantiates the approval of FHWA approval of FHWA Calculated Goal dB	ess e use minus Goal	
PROJECT/CONTRACT: Portola Center RUN: 2nd Floor Unmitigated INPUT HEIGHTS INPUT HEIGHTS ATMOSPHERICS: 68 deg F, 50% RH Receiver No. #DUs Name No. #DUs Receiver No. #DUs	center r Unmitigated EIGHTS sisting No Barrier Aeq1h BA dBA 0.0 60.0 0.0 62.2 0.0 62.5	dBA dB 66 dB dB	rease over exicutated and a subsection of the su	A a isting th n lnc lnc	verage p State hig f a differ npact	avement typ ghway agenc ent type with With Barrier Calculated LAeq1h dBA 60.0	e shall be used unley substantiates the approval of FHWA Noise Reduction Calculated Goal dB	ess e use minus Goal	≥ -00 2000
RUN: 2nd Floor Unmitigated BARRIER DESIGN: INPUT HEIGHTS ATMOSPHERICS: 68 deg F, 50% RH Receiver No. #DUS Existing Name No. #DUS Existing No Barrier Name No. #DUS Existing No Barrier Receiver No. #DUS Existing No Barrier Rame No. #DUS Existing No Existing Rame No. #DUS Existing No Existing Rame No. No. No Si Si	r Unmitigated EIGHTS ; 50% RH Existing No Barrier Aeq1h LAeq1h Calculated BA dBA 57.7 0.0 60.0 0.0 62.5	dBA dB	rease over exiculated Cr and C	A a isting Ty it'n In it'n C	verage p State hig a differ npact	avement typ ghway agenc ent type with With Barrier Calculated LAeq1h dBA 60.0	e shall be used unl cy substantiates the approval of FHWA Approval of FHWA Approval of EHWA Calculated Goal	ess e use minus Goal	
BARRIER DESIGN: INPUT HEIGHTS ATTMOSPHERICS: 68 deg F, 50% RH Receiver 68 deg F, 50% RH Name No. #DUs Existing Name No. #DUs Existing No Barrier Name No. #DUs Existing No Barrier Name No. #DUs Existing No Barrier Receiver No. #DUs Existing No Barrier Rate No. #DUs Calculatec Calculatec R1 3 1 0.0 60 R3 5 1 0.0 62	; 50% RH Existing No Barrier Aeq1h LAeq1h BA dBA 57.7 0.0 60.0 0.0 62.5	dBA dB	rease over exi culated Cr Su	A a a listing Ty of a a a a a a a a a a a a a a a a a a	verage p State hig a differ ppect	avement typ bavement type with ent type with With Barrier Calculated LAeq1h dBA 60.0	e shall be used unl y substantiates the approval of FHWA Anoise Reduction Calculated Goal	ess e use minus Goal	
ATMOSPHERICS: 68 deg F, 50% RH Receiver 68 deg F, 50% RH Name No. #DUs Existing Name No. #DUs Existing Name No. #DUs Existing R1 0.0 dBA dBA R2 5 1 0.0 R4 5 1 0.0	; 50% RH :xisting No Barrier Aeq1h Calculated BA dBA dBA calculated 0.0 60.0 64.0 0.0 62.5	dBA dB	rease over exi culated Cr dB	a listing of type of the second secon	Appe differ	With Barrier Vith Barrier Calculated LAeq1h dBA 60.0	approval of FHWA approval of FHWA Noise Reduction Calculated Goal	Calcul minus Goal	2 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Receiver No. #DUs Existing No Barrier Name No. #DUs Existing No Barrier Name No. #DUs Existing No Barrier R1 0.0 0.0 60 57 R2 0.0 1 0.0 60 R3 5 1 0.0 62	xisting No Barrier Aeq1h LAeq1h BA LAeq1h BA dBA 0.0 57.7 0.0 60.0 0.0 62.2 0.0 64.0 0.0 62.5	Crit'n Call dBA dB	rease over exi culated Cr Su dB	isting Ty it'n In ub'l Inc	L L L L L L L L L L L L L L L L L L L	With Barrier Calculated LAeq1h dBA 60.0	Noise Reduction Calculated Goal	Calcul minus Goal	
Name No. #DUs Existing No Barrier Image: Partial state stat	Sxisting No Barrier Aeq1h LAeq1h Laeq1h Calculated BA dBA 0.0 57.7 0.0 60.0 0.0 60.0 0.0 62.2 0.0 62.5	Crit'n Calu dBA dB	rease over exi culated Cr Su dB	isting Ty it'n Im Jb'l Inc	L L Abe	With Barrier Calculated LAeq1h dBA 60.0	Noise Reduction Calculated Goal	Calcul minus Goal	
LAeq1h LAeq1h R1 Calculated R2 3 1 0.0 60 R3 5 1 0.0 60	Aeq1h LAeq1h Calculated Calculated BA dBA 0.0 57.7 0.0 60.0 0.0 60.0 0.0 62.2 0.0 64.0 0.0 64.0 0.0 62.2 0.0 62.2	dBA dB	rease over exi culated Cr Su dB	isting T) it'n In ub'l Inc	Ape Appect	Calculated LAeq1h dBA 57.7 60.0	Noise Reduction Calculated Goal	Calcul minus Goal dB	
R1 3 1 0.0 60 R2 5 1 0.0 60 R3 5 1 0.0 60	Calculated BA dBA 0.0 57.7 0.0 60.0 0.0 60.0 0.0 62.2 0.0 64.0 0.0 62.5	Crit'n Call dBA dB	culated Cr Su dB	it'n Ib'l Inc	l l l	LAeq1h dBA 57.7 60.0	Calculated Goal	Calcul minus Goal dB	-8.0
R1 dBA dBA dBA R2 4 1 0.0 57 R3 5 1 0.0 66	IBA dBA 0.0 57.7 0.0 60.0 0.0 62.2 0.0 62.5 0.0 64.0 0.0 62.5	dBA dB	ng dB		11	dBA 57.7 60.0	dB dB	Goal dB	8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
R1 dBA dBA dBA R2 3 1 0.0 5 R3 5 1 0.0 62	BA dBA 0.0 57.7 0.0 60.0 0.0 60.0 0.0 62.5 0.0 64.0 0.0 62.5	dBA dB 66	g	-	1	dBA 57.7 60.0	dB	dB	8- 0.0
R1 3 1 0.0 51 R2 4 1 0.0 60 R3 5 1 0.0 62 R4 62 62 62 62	0.0 57.7 0.0 60.0 0.0 62.2 0.0 62.2 0.0 62.5	99			1	57.7 60.0		1	- 8.0 0.8
R2 4 1 0.0 60 R3 84 1 0.0 62 R4 1 0.0 62 R4 84 84 84 84 84 84 84 84 84 84 84 84 84	0.0 60.0 0.0 62.2 0.0 64.0 0.0 64.0 0.0 64.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57.7	10	1	60.09	0.0	8	С 4
R3 5 1 0.0 62 R4 6 1 0.0 64	0.0 62.2 0.0 64.0 0.0 62.5	00	60.09	10			0.0	80	2.5
R4 6 1 00 64	0.0 64.0 0.0 62.5	66	62.2	10	I	62.2	0.0	8	-8.0
	0.0 62.5	66	64.0	10	I	64.0	0.0	8	-8.0
R5 7 1 0.0 62		66	62.5	10	I	62.5	0.0	8	-8.0
R6 8 1 0.0 62	0.0 62.4	66	62.4	10	ſ	62.4	0.0	ω	-8.0
R7 9 1 0.0 58	0.0 58.5	66	58.5	10	ł	58.5	0.0	ω	-8.0
R8 10 1 0.0 57	0.0 57.9	66	57.9	10	-	57.6	0.0	œ	-8.0
R9 11 1 0.0 6'	0.0 61.3	66	61.3	10	1	61.3	0.0	80	-8.0
R10 12 1 0.0 55	0.0 59.1	66	59.1	10		59.1	0.0	80	-8.0
R11 13 1 0.0 56	0.0 56.1	66	56.1	10	1	56.1	0.0	80	-8.0
R12 14 1 0.0 55	0.0 59.5	66	59.5	10	1	59.5	0.0	80	-8.0
R13 15 1 0.0 46	0.0 49.5	99	49.5	10		49.5	0.0	80	-8.0
R14 16 1 0.0 45	0.0 49.5	99	49.5	10	ł	49.5	0.0	80	-8.0
R15 17 1 0.0 5'	0.0 51.6	99	51.6	10	I	51.6	0.0	80	-8.0
R16 18 1 0.0 56	0.0 58.0	66	58.0	10	I	58.0	0.0	8	-8.0
R17 19 1 0.0 6'	0.0 61.7	66	61.7	10	1	61.7	0.0	80	-8.0
R18 20 1 0.0 61	0.0 61.9	99	61.9	10	1	61.5	0.0	8	-8.0
R19 21 1 0.0 60	0.0 60.0	99	60.09	10	1	60.0	0.0	8	-8.0
R20 22 1 0.0 56	0.0 58.6	66	58.6	10	1	58.6	0.0	8	-8.0
R21 23 1 0.0 56	0.0 59.5	66	59.5	10	Ę	59.5	0.0	ω	-8.0
R22 24 1 0.0 65	0.0 65.9	66	65.9	10	l	65.9	0.0	80	-8.0
R23 25 1 0.0 65	0.0 65.4	99	65.4	10	L	65.4	0.0	8	-8.0

30 January :

C:\TNM25\PROGRAM\PORTOLA\2nd Floor Unmitigated

RESULTS: SOUND LEVELS						Pol	rtola Cer	nter				
R24	26	1	0.0	5.3	66	66.3	10	Snd Lvl	66.3	0.0	80	-8.0
R25	27	-	0.0	5.9	66	62.9	10		65.9	0.0	8	-8.0
R26	28	1	0.0	3.1	66	63.1	10	I	63.1	0.0	80	-8.0
R27	29	1	0.0	3.5	66	63.5	10	I	63.5	0.0	80	-8.0
R28	30	-	0.0	0.6	66	60.6	10	I	60.6	0.0	80	-8.0
R29	31	-	0.0 51	5.3	66	56.3	10	1	56.3	0.0	80	-8.0
R30	32	-	0.0	4.7	66	64.7	10	1	64.7	0.0	8	-8.0
R31	33	1	0.0	5.2	66	66.2	10	Snd Lvl	66.2	0.0	80	-8.0
R32	34	1	0.0	0.7	66	67.0	10	Snd Lvl	67.0	0.0	8	-8.0
R33	35	-	0.0	5.4	66	65.4	10	1	65.4	0.0	80	-8.0
R34	36	-	0.0	2.7	66	62.7	10	1	62.7	0.0	80	-8.0
R35	37	1	0.0	1.4	66	61.4	10	1	61.4	0.0	80	-8.0
R36	38	-	0.0	1.4	66	61.4	10	l	61.4	0.0	80	-8.0
R37	39	-	0.0	1.3	66	61.3	10	ł	61.3	0.0	80	-8.0
R38	40	1	0.0	1.2	66	61.2	10	1	61.2	0.0	80	-8.0
Park	41	-	0.0	4.1	66	64.1	10	1	64.1	0.0	80	-8.0
R39	42	1	0.0	4.9	66	64.9	10	1	64.9	0.0	80	-8.0
R40	43	-	0.0	3.7	66	66.7	10	Snd Lvl	66.7	0.0	80	-8.0
MF1	44	1	0.0	3.2	66	63.2	10	1	63.2	0.0	8	-8.0
MF2	45	1	0.0	2.5	66	62.5	10	1	62.5	0.0	8	-8.0
MF3	46	1	0.0	2.9	66	62.9	10	100	62.9	0.0	8	-8.0
MF4	47	-	0.0	2.8	66	62.8	10		62.8	0.0	8	-8.0
MF5	48	-	0.0	1.5	66	61.5	10	tine.	61.5	0.0	80	-8.0
MU1	49	-	0.0	3.9	66	63.9	10	1	63.9	0.0	8	-8.0
Dwelling Units	ng #	s Noise F	Reduction									
		Min	Avg	Max								
		đВ	đB	đB								
All Selected	-	47 (0.0	0.0	0.0				5			
All Impacted		4	0.0	0.0	0.0							
All that meet NR Goal		0	0.0	0.0	0.0							

30 January :

ATTACHMENT 4 *Noise Measurement Field Data Sheet*

NOISE LEVEL MEASUREMENT

Project Noise S Distanc 50	Name: Portola Source: <u>Glen Ra</u> e to Source (C.L.) M ^{eL}	na Kozd):~50	Sick 1	Date: <u>9/2</u> Start Time:_ Temperature: Wind (speed	$\frac{512}{1100} + -11$ $\frac{72}{\text{Degrees}}$	- 20 a.m. J
L_{max} L_{min} L_{1} L_{10} L_{50} L_{90} L_{fut} $Cars (L_{min})$	69.1 - & y - 3 -1 		· •	Cloud Cover Humidity: <u>Running Ave</u> $L_{eq}(5)_{6} \leq 9$ $L_{eq}(10)_{6} \leq 9$ $L_{eq}(10)_{6} \leq 9$ $L_{eq}(20)_{6} \leq 9$ $L_{eq}(20)_{6} \leq 9$ $L_{eq}(30)_{}$	$\frac{\text{Humid Normal}}{\text{rage}} \qquad $	iv Clear Dry
HT (L Cars MT HT		, HATHTUHTUHTUTT HAT HT HTIHTUT 1 . /5		je se	$\frac{1}{20} \text{ m} \rightarrow \frac{1}{120}$	
<u>,</u>		d			÷	
		:		······································	••••••••••••••••••••••••••••••••••••••	
					······	
			· · · · · · ·	© * *		

NOISE LEVEL MEASUREMENT

Project N Noise So Distance	Name: $\frac{1}{2} + \frac{1}{2} $	k Ranch Rd.): 250	51622	Date: <u>9/2 </u> Start Time: <u>//:</u> Temperature: <u>7</u> Wind (speed/di	$\frac{12}{34 - 1137} \Delta \sim$ $\frac{79}{20} Degrees}{rection}: 44$	ž
L_{max} L_{min} L_{1} L_{10} L_{50} L_{90} $U \rho A U \mid$ $Cars (L_{max})$	66.9 85 37 75.5 71 605 41 11	<u>9</u>	· •	Cloud Cover: Humidity:F <u>Running Avera</u> $L_{eq}(5)_{-6}(2, 5)$ $L_{eq}(10)_{-6}(2, 5)$ $L_{eq}(15)_{-1}(2, 5)$ $L_{eq}(20)_{-6}(2, 5)$ $L_{eq}(25)_{}$ $L_{eq}(30)_{}$	$\frac{\text{Cloudy P.Coudy}}{\text{Humid Normal}}$ $\frac{\text{L}_{eq}(35)}{\text{L}_{eq}(40)}$ $\frac{\text{L}_{eq}(45)}{\text{L}_{eq}(50)}$ $\frac{\text{L}_{eq}(55)}{\text{L}_{eq}(60)}$	Drv Drv
HT (L _{max})	·		l	· 	· · · · · · · · · · · · · · · · · · ·	-
	ے بچ 11111111111111111111111111111111111			2	20 min	
Cars					(193)	
MT	<u>ک</u>	١.	5m/Lile d		(d)	
HT	X	B	Q		(25)	
		6				
-		;				· • • • • • • • • • • • • • • • • • • •
) rea, a~				
						>

(8)

K2-